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Abstract. Modern computer systems are both large-scale, consisting
of hundreds or thousands of servers, and heterogeneous, meaning that
not all servers have the same speed. In such systems, slowdown—the
ratio of a job’s response time to its size—is an important performance
metric that has not yet received significant attention. We propose a new
definition of slowdown that is well-suited to large-scale, heterogeneous
systems. We analyze mean slowdown and mean response time under the
Probabilistic SITA family of dispatching policies, and use our analysis to
present a numerical study of the tradeoff between these two performance
metrics.
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1 Introduction

Today’s computer systems typically consist of hundreds or thousands of servers
that are heterogeneous in the sense that not all servers have the same speed.
Deciding how to dispatch jobs to servers is a question of critical importance
in achieving good performance in such systems; policies designed for homoge-
neous systems often perform poorly in the presence of heterogeneity [1]. Here
“performance” typically refers to the size of the stability region or to mean re-
sponse time; most of the work on large-scale heterogeneous systems focuses on
the design, analysis, and evaluation of dispatching policies with respect to these
metrics [1, 6].

In this paper we consider an alternative performance metric: mean slowdown,
where the slowdown of a job captures the ratio between the job’s response time
and its size. Slowdown is a well-studied metric in single-server systems; the
Shortest-Processing-Time-Product (SPTP, also referred to as RS) scheduling
policy is known to minimize mean slowdown [5, 7], while Processor Sharing (PS)
and Preemptive Last-Come First-Served (PLCFS) have the desirable property
that a job’s expected slowdown is independent of its size [3]. However, there is
relatively little work studying slowdown in heterogeneous systems, and this work
tends to focus on systems with only two or three servers [5].

We propose a new definition of slowdown for large-scale heterogeneous sys-
tems. We introduce a generalization of the Size Interval Task Assignment (SITA)
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policy [4], which we call Probabilistic SITA (PSITA). We analyze the mean sys-
tem slowdown and mean response time under PSITA and use our analysis to
identify optimal parameterizations of PSITA. Finally, using our analytical re-
sults, we gain insight about the structure of optimal PSITA policies and the
relationship between mean response time and mean slowdown.

2 Model and Preliminaries

We consider a system with k servers that are heterogeneous in that different
servers may have different speeds. We assume that there are s server speed
classes and let S ≡ {1, . . . , s} denote the set of all server classes. We denote the
number of servers in class i as ki and the fraction of servers in class i as qi = ki/k,
i ∈ S. Class-i servers have speed µi, where µ1 > · · · > µs; all servers operate
under the Processor Sharing (PS) scheduling discipline. We assume that each
job has a size X drawn from a general distribution. Following [2], the time that
a job with size X spends in service on a server with speed µi is X/µi. Arrivals to
the system follow a Poisson process with rate λk. Without loss of generality, we
assume that the total capacity of the system is k, i.e., we require

∑s
i=1 qiµi = 1.

To ensure stability, we assume that λ < 1.
Our primary metric of interest is the mean system slowdown. In a homoge-

neous system, i.e., one in which all servers have the same speed, the slowdown

of a job with size x is S(x) ≡ T (x)
x , where T (x) is the job’s response time. No-

tably, this definition of slowdown implies that S(x) ≥ 1, and hence captures the
extent to which the job is “slowed down” by the presence of other jobs, rela-
tive to the response time it would experience running in isolation. Extending
this definition to heterogeneous systems presents a challenge: how should one
account for the differences in server speeds? One approach, used in [5], defines
the slowdown of a job with size x running on a class-i server (i.e., a server with

speed µi) as S(x) ≡ T (x)
x/

∑
j µj

. That is, the slowdown is normalized relative to the

overall capacity of the system. The disadvantage of this approach is that, as the
number of servers in the system grows, slowdowns can become extremely large,
making it difficult to draw meaningful comparisons between different system
configurations.

To overcome this disadvantage, we propose a new definition of slowdown in
heterogeneous systems.

Definition 1. The slowdown of a job with size x running on a class-i server

is Si(x) ≡ Ti(x)
x .

At first glance, this definition looks identical to the definition of slowdown in
a single-server (or homogeneous) system. However, we note that the term x in the
denominator does not include the server’s speed: this is the job’s “inherent size,”
and not the time it spends in service. Hence, using this definition of slowdown, a
job that runs in isolation on a class-i server will experience slowdown 1/µi, and in
general a job’s slowdown is scaled by a factor of 1/µi relative to its slowdown on
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a speed-1 server (i.e., when a job’s service time is equal to its size). For example,
in an M/G/1/PS system in which the server has speed 1, the mean slowdown
is E[S] = E[S|X] = 1

1−ρi
[3]. Using our heterogeneity-based definition, the mean

slowdown at a class-i server under PS is E[S] = 1
1−ρi

· 1
µi
, where in both cases

ρi denotes the fraction of time that a class-i server is busy.

There are several key advantages to our definition of slowdown. First, our
definition is easily interpretable: if a job experiences a slowdown less than 1, we
know that the job ran on a fast server and did not compete with many other jobs.
Meanwhile, if a job experiences a slowdown greater than 1, we know that it ran on
a slow server or on a heavily-loaded server. This clean interpretation is in contrast
to the definition used in [5], under which a job that runs in isolation on a fast
server may nonetheless experience a very high slowdown. Second, our definition
does not explicitly depend on the total system capacity, meaning that, unlike
in [5], adding servers to the system will not artificially inflate slowdown values.
Finally, our definition facilitates comparisons between the slowdowns obtained
under different system configurations, given a fixed total system capacity.

With the goal of achieving low mean slowdown in mind, we propose a new dis-
patching policy called Probabilistic SITA (PSITA) that generalizes the SITA [4]
policy. SITA is typically defined for homogeneous systems (i.e., systems in which
all servers have the same speed). Under SITA, jobs are divided into k bins based
on their sizes; recall that k is the number of servers in the system. One server
is allocated to each bin; when a job arrives, it is dispatched to the server corre-
sponding to its bin. In this way, small jobs are isolated from big jobs, thereby
protecting the small jobs from experiencing high response times and high slow-
downs.

The PSITA policy generalizes SITA by (i) allowing the number of bins to
differ from the number of servers, and (ii) making dispatching decisions proba-
bilistically, rather than deterministically. In particular, under PSITA, jobs are
divided into b bins based on their sizes. When a job from bin j arrives, the job
is dispatched to one of the server classes, where this class is chosen probabilisti-
cally. These two extensions render PSITA appropriate for use in heterogeneous
systems.

Definition 2. Let 0 ≡ x1 ≤ x2 ≤ · · · ≤ xb < xb+1 ≡ ∞. A job is in bin j if it
has size x such that xj ≤ x < xj+1, j ∈ {1, . . . , b} ≡ B. Under the Probabilistic
SITA (PSITA) dispatching policy, when a job from bin j arrives it is sent to
some class-i server with probability pj,i, for all i ∈ S. The specific server is
chosen uniformly at random among all class-i servers.

3 Analysis

In this section we derive mean slowdown, E[S], and mean response time, E[T ],
under PSITA dispatching and PS scheduling for fixed values of xj , j ∈ B, and
pj,i, j ∈ B, i ∈ S.
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We begin by observing that

E[S] =
s∑

i=1

piE[Si]

E[T ] =
s∑

i=1

piE[Ti],

where E[Si] and E[Ti] are respectively the mean slowdown and the mean re-
sponse time on a class-i server, and pi is the probability that an arbitrary job
is dispatched to a class-i server. Note that the per-class mean slowdowns are
weighted by the probability that an arbitrary job runs on a class-i server, not
the probability that a server is of class i.

To find pi, we will condition on the job’s size, X; recall that, under PSITA,
jobs in size bin j are dispatched to a class-i server with probability pj,i. We find:

pi =

b∑
j=1

pj,iP(X ∈ [xj , xj+1)). (1)

The PSITA dispatching policy amounts to Poisson splitting of the jobs within
each bin, hence each class-i server behaves like an M/Gi/1. The total arrival rate
to class-i servers is λkpi; because we dispatch uniformly within a server class,
the arrival rate to an individual class-i server is

λi =
λkpi
ki

=
λpi
qi

. (2)

The service time at a class-i server is distributed as Yi ∼ Xi/µi. Here Xi de-
notes the size distribution of jobs that are dispatched to class-i servers. In an
M/Gi/1/PS with arrival rate λi and service times Yi, the mean slowdown and
mean response time are given by:

E[Si] =
1

(1− ρi)

1

µi

E[Ti] =
λiE[Y 2

i ]

2(1− ρi)
=

λiE[X2
i ]

2(1− ρi)

1

µ2
i

.

We now proceed to find ρi, E[Xi], and E[X2
i ]. The load at each class-i server

is

ρi = λiE[Yi] = λi
E[Xi]

µi
. (3)

We find the expected job size on a class-i server by conditioning on the job
size bin:

E[Xi] =

b∑
j=1

pj,iP(X ∈ [xj , xj+1))

pi
E[X|X ∈ [xj , xj+1)], (4)



Understanding Slowdown in Large-Scale Heterogeneous Systems 5

where the term
pj,iP(X∈[xj ,xj+1))

pi
gives the fraction of jobs at class-i servers that

are from bin j. Similarly, we have:

E[X2
i ] =

b∑
j=1

pj,iP(X ∈ [xj , xj+1))

pi
E[X2|X ∈ [xj , xj+1)]. (5)

At this point we have derived all of the components necessary to obtain the
following results.

Proposition 1. The mean slowdown and mean response time under PSITA
dispatching and PS scheduling are:

E[S] =
s∑

i=1

pi
1

(1− ρi)

1

µi

E[T ] =
s∑

i=1

pi
λiE[X2

i ]

2(1− ρi)

1

µ2
i

where pi, λi, ρi, E[Xi], and E[X2
i ] are given in (1)-(5).

Using our closed-form expressions for E[S] and E[T ] given in Proposition 1, we
can now find the PSITA policy that minimizes each metric by jointly optimizing
over xj , j ∈ B, and pj,i, j ∈ B, i ∈ S. Our optimization problem for mean
slowdown is:

min
pj,i,j∈B,i∈S

xj ,j∈B

s∑
i=1

pi
1

(1− ρi)

1

µi

s.t. pi =

b∑
j=1

pj,iP(X ∈ [xj , xj+1)) ∀i ∈ S

ρi =
λpiE[Xi]

qiµi
∀i ∈ S

E[Xi] =

b∑
j=1

pj,iP(X ∈ [xj , xj+1))

pi
· E[X|X ∈ [xj , xj+1)] ∀i ∈ S

s∑
i=1

pj,i = 1 ∀j ∈ B

s∑
i=1

pi = 1

0 ≤ pj,i, pi ≤ 1 ∀j ∈ B, i ∈ S
0 ≤ ρi < 1 ∀j ∈ B

The optimization problem for mean response time is similar. While we opt to
take b = |B| (the number of job size bins) as fixed, note that one could also leave
b as a parameter of the optimization problem.
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λ p∗2,1 p∗1,1 x∗
2 E[S] ρ1 ρ2

0.1 0 1 3.96 0.88 0.14 0.03

0.2 0 1 2.76 1.02 0.23 0.14

0.3 0 1 2.4 1.18 0.31 0.28

0.4 0 1 2.28 1.38 0.4 0.4

0.5 0 1 2.2 1.65 0.48 0.53

0.6 0 1 2.2 2.05 0.58 0.64

0.7 0 1 2.2 2.72 0.68 0.74

0.8 0 1 2.24 4.06 0.79 0.83

0.9 0.01 1 2.24 8.07 0.89 0.92

Table 1. Optimal policy parameters and corresponding performance metrics when
q1 = q2 = 0.5 and r = 2.

4 Results and Discussion

In this section, we present a brief numerical study of systems with s = 2 server
speeds and b = 2 job size bins; we assume that X ∼ Exp(1). We let r ≡ µ1

µ2

denote the speed ratio between fast and slow servers.
Both the objective function and the constraints of the optimization problem

given in Section 3 are non-convex in multiple dimensions, hence standard opti-
mization algorithms are not guaranteed to yield globally optimal solutions. We
thus carry out our optimization using a grid search, considering all 4 080 501 com-
binations of x2 ∈ {0, 0.04, . . . , 3.96, 4} and p1,1, p2,1 ∈ {0, 0.005, . . . , 0.995, 1}. We
then select the parameters (x∗

2, p
∗
1,1, p

∗
2,1) that yield the lowest mean slowdown

and refer to this as the optimal solution for the given system settings.

4.1 Structure of Optimal PSITA Policies

In this section, we study the structure of PSITA policies that minimize mean
slowdown. Table 1 shows the optimal policy parameters (p∗1,1, p∗2,1, and x∗

2)
and corresponding performance metrics (E[S], ρ1, and ρ2) in a system in which
q1 = q2 = 0.5, r = 2, and λ varies. (While Table 1 shows results only for one
specific pair of q1 and r values, we observed similar results for other parameter
settings.) Interestingly, the optimal PSITA policies are in fact nearly always
SITA policies. That is, the optimal policy nearly always has p∗1,1 = 1 and p∗2,1 = 0,
meaning that all small jobs are dispatched to fast servers and all large jobs are
dispatched to slow servers. This indicates that the primary factor that leads to
low slowdown is the isolation of small jobs. Indeed, at all but the highest values
of λ, the only policy parameter that changes with λ is the size cutoff above
which jobs are considered large: as λ increases the optimal size cutoff decreases.
This is because at higher values of λ, isolating the very smallest jobs requires
us to offload more moderately-sized jobs to the slow servers. When λ is very
high, the optimal policies change structurally in two ways. First, the optimal
cutoff increases slightly. Second, the optimal PSITA policy is no longer a SITA



Understanding Slowdown in Large-Scale Heterogeneous Systems 7

Fig. 1. Mean response time vs. mean slowdown for λ = 0.5, q1 = q2 = 0.5,
µ1 = 4

3
, and µ2 = 2

3
, for all values of x2 ∈ {0, 0.04, . . . , 3.96, 4} and p1,1, p2,1 ∈

{0, 0.005, . . . , 0.995, 1}. Colors represent the value of p1,1 (left) and p2,1 (right).

policy. Together, these structural changes ensure that the slow servers remain
stable. This highlights the additional flexibility that PSITA offers over SITA:
under SITA, it would only be possible to maintain stability at the slow servers
by increasing the size cutoff between small and large jobs.

4.2 Tradeoff between E[S] and E[T ]

We now turn to the relationship between mean slowdown and mean response
time. Figure 1 shows E[T ] as a function of E[S] in a system where q1 = q2 = 0.5,
r = 2, and λ = 0.5. Each point represents a different parameterization of the
PSITA policy; we show all parameterizations considered in the grid search, giving
a total of 4 080 501 points. In general, there is a roughly linear relationship
between mean response time and mean slowdown. Both metrics depend strongly
on the per-class loads, so a policy parameterization that leads to a high load at
one or both server classes likely yields poor performance for both metrics.

Despite the correlation between E[S] and E[T ], it is clear that the optimal
policies for slowdown are not necessarily optimal for mean response time. Two
distinct regions emerge in Figure 1: a “cone” with slightly lower E[S] (shown
by yellow points in the left subfigure and by red points in the right subfigure)
consisting of policies that send most of the small jobs to fast servers and most
of the big jobs to slow servers, and a “cone” with slightly higher E[S] (shown
by blue points in both subfigures) consisting of policies that do the opposite.
Broadly, policies in the former cone obtain similar mean response times to their
counterparts in the latter cone, but lower mean slowdowns. This pattern em-
phasizes the importance not only of isolating the small jobs, but of isolating the
small jobs on fast servers in order to achieve low mean slowdown.

Ultimately, in a system where both metrics are of equal importance, one
would want to select a policy along the Pareto-dominating envelope of the region
shown in Figure 1. Figure 2 shows the tradeoff between E[S] and E[T ] for these
dominating policies, for three values of λ and four values of r. That is, each point
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(a) r = 1.1 (b) r = 2

(c) r = 5 (d) r = 10

Fig. 2. Mean response time vs. mean slowdown for three values of λ and four values
of r, where q1 = q2 = 0.5. Each point represents a non-dominated policy, i.e., a policy
for which it is not possible to simultaneously reduce both E[S] and E[T ].

represents a policy for which it is not possible to simultaneously reduce both
E[S] and E[T ]. When λ is low, the Pareto-optimal policies are tightly clustered:
the policies that are optimal with respect to E[T ] are also nearly optimal with
respect to E[S], and vice versa. As λ increases the tradeoff between E[S] and
E[T ] becomes more pronounced: there emerges a set of distinct Pareto-optimal
policies. All of these policies behave similarly in the sense that all operate by
isolating small jobs. However, the policies differ in where they isolate the small
jobs. As previously observed, slowdown-optimal policies send small jobs to fast
servers and large jobs to slow servers; meanwhile, the policies that minimize
mean response time tend to do the opposite. While different policies are optimal
for each metric, we note that E[T ] is significantly less sensitive than E[S] to the
choice of (Pareto-optimal) policy.

5 Conclusion

Our work represents an important first step towards understanding slowdown
in large-scale, heterogeneous systems. Our key contribution is our definition of
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slowdown, which is interpretable, scalable, and allows for meaningful compar-
isons between system configurations. We analyze mean slowdown and mean re-
sponse time under the PSITA dispatching policy and PS scheduling, and present
a numerical study of the tradeoff between these two performance metrics. Our
results indicate that, while mean slowdown and mean response time are gener-
ally correlated, minimizing one metric does not necessarily result in minimizing
the other. In particular, slowdown is far more sensitive than response time to
the particular choice of policy parameters, suggesting that when both metrics
are of equal importance, it may be more valuable to select a policy aimed at
minimizing slowdown.

While our numerical study considers only systems with two server speeds and
exponentially distributed job sizes, and we allow our PSITA policies to include
only two job size bins, we expect that the insights learned from this study are
likely to translate to more general settings. In particular, we anticipate that
isolating small jobs at fast servers will remain the most important factor in
achieving low mean slowdown. Furthermore, preliminary results suggest that
there are diminishing marginal returns when increasing the number of jobs size
bins beyond two.

In this paper we focus on identifying optimal dispatching policies within the
PSITA family; however these policies likely are not optimal more generally. For
example, policies that yield lower mean response times, such as JSQ-d, JIQ, and
the policies studied in [1], will likely also yield lower mean slowdowns; analyzing
slowdown under such policies represents an important direction for future work.
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