
An “A+” Heuristic for Dispatching in Large-Scale
Systems with Unknown Server Speeds

Cole Stephens
Department of Computer Science

Amherst College
Amherst, MA, USA

Kristen Gardner
Department of Computer Science

Amherst College
Amherst, MA, USA

kgardner@amherst.edu

Abstract—How to dispatch jobs to servers is a question of criti-
cal importance in today’s computer systems. While there is a long
history of literature on dispatching, much of this work focuses
on settings where servers are homogeneous in their speeds—an
unrealistic assumption in modern computer systems. Dispatching
policies that are heterogeneity-aware typically assume that the
dispatcher has access to detailed information about all servers’
speeds; this may also be unrealistic. In this paper, we study
the setting in which server speeds are heterogeneous and the
dispatcher has no information about server speeds. We propose
a novel heuristic, called server accomplishment, that can be used
as a proxy for detailed server speed information in heterogeneity-
aware dispatching policies. Using extensive simulation studies, we
demonstrate that our accomplishment-based dispatching poli-
cies are able to bridge most of the performance gap between
heterogeneity-unaware policies, such as JSQ(d), and policies that
make use of detailed server speed information.

Index Terms—Dispatching; Load balancing; Power-of-d; Het-
erogeneity

I. INTRODUCTION

How to dispatch jobs to servers is a question of critical
importance in today’s computer systems. There is a long
history of literature that strives to answer this question,
beginning with the canonical Join-the-Shortest-Queue (JSQ)
policy, under which an arriving job is dispatched to the server
with the fewest jobs in its queue. JSQ is known to minimize
mean response time in certain settings, and its performance
has been analyzed in a variety of regimes [4], [10], [14],
[15]. Unfortunately, JSQ is an impractical choice for modern
systems for two key reasons. First, today’s systems operate at
large scale. In systems consisting of hundreds or thousands
of servers, querying all servers for their queue lengths upon
every job’s arrival is prohibitively expensive. Second, today’s
systems are heterogeneous, meaning that different servers may
operate at different speeds. In this regime, JSQ is no longer
optimal because it does not account for differing server speeds.

To reduce the communication overhead in large-scale sys-
tems, researchers have proposed a number of alternative ap-
proaches. In the “power-of-d” approach, the dispatcher queries
a small number of servers upon a job’s arrival, and dispatches
the job to one of the queried servers. A well-known policy
in this category is Join-the-Shortest-Queue(d) (JSQ(d)), under
which the job is dispatched to the queried server with the
shortest queue [7], [13]. In the “pull-based” approach, the
dispatcher relies on servers providing periodic updates of

their statuses. One policy in this category is Join-Idle-Queue
(JIQ), under which the dispatcher sends an arriving job to an
idle server if there is one, and to a randomly chosen busy
server otherwise [6]. Both of these approaches require far
less communication between servers and dispatcher than JSQ,
making them suitable for large-scale systems. However, the
canonical policies within these approaches assume that server
speeds are homogeneous; this assumption can lead to poor
performance in heterogeneous settings [5], [9], [11], [16].

More recently, new policies have been proposed that do
account for heterogeneous server speeds. Heterogeneity-aware
descendants of JSQ(d) include Shortest-Expected-Delay(d),
Balanced Routing [2], Hybrid SQ(d) [9], and JSQ(dF , dS) [3].
Pull-based policies such as JIQ also can be adapted to be
heterogeneity-aware. In all cases, the heterogeneity-aware
variants produce lower mean response times than their
heterogeneity-unaware analogues. Yet all of the heterogeneity-
aware policies require the dispatcher to know some informa-
tion about the servers’ speeds. The required information ranges
from the coarse (e.g., heterogeneity-aware JIQ requires only an
ordering of servers by their speeds) to the exceedingly detailed
(e.g., JSQ(dF , dS) requires the exact speed of each server).

In this paper, we study the setting in which server speed
information is unavailable to the dispatcher. This situation may
arise, for example, in a cloud computing setting where the
exact server speeds depend on the underlying physical machine
and resource contention experienced by a virtual machine.
Unfortunately, the heterogeneity-aware policies proposed in
the literature are not feasible in this setting.

Our primary contribution is a novel heuristic, called accom-
plishment, that is used to help the dispatcher estimate server
speeds. A server’s accomplishment at time t is defined as the
number of jobs that have been dispatched to the server by time
t. Clearly, the dispatching policy affects the servers’ accom-
plishment values: under random or round-robin dispatching
all servers have the same accomplishment, whereas policies
that do not treat all servers symmetrically will yield higher
accomplishments for the favored servers. In the setting in
which server speeds are unknown, accomplishment is a useful
heuristic if faster servers tend to become more accomplished.
If this is the case, the dispatching policy can favor more
accomplished servers as a proxy for favoring faster servers,
thereby effectively implementing a heterogeneity-aware policy



even when server speeds are unknown.
Because the dispatching policy’s decisions affect the

servers’ accomplishment, which in turn affects later dispatch-
ing decisions, it is not at all obvious that using accomplishment
as a proxy for speed will actually yield dispatching policies
that perform well. We will show how four heterogeneity-aware
dispatching policies, SED(d), BR, JIQ, and JSQ(dF , dS),
can be adapted to incorporate the accomplishment heuristic,
yielding four new “Accomplishment+” policies: A+SED(d),
A+BR, A+JIQ, and A+JSQ(dF , dS). Our extensive simulation
results demonstrate that, in many cases, the A+ policies are
capable of closing most of the performance gap between
heterogeneity-unaware policies such as JSQ(d) and JIQ, and
their heterogeneity-aware descendants. As an added benefit,
accomplishment is a low-communication heuristic, requiring
no more communication between servers and dispatcher than
the baseline heterogeneity-aware policies.

The remainder of this paper is organized as follows. In
Section II we introduce our model and formally define the
accomplishment heuristic. In Section III we define the four
“A+” policies that we consider and empirically evaluate their
performance in systems with two server speed classes and
exponentially distributed service times. Sections IV-A, IV-B,
and IV-C address three generalizations aimed at moving to
more realistic system settings: general service times, more than
two server speed classes, and server speeds that may change
over time. Finally, in Section V, we conclude.

II. MODEL AND PRELIMINARIES

We consider a system that consists of k servers with
heterogeneous speeds, where kF of the servers are “fast”
and kS = k − kF of the servers are “slow” (for more than
two classes of servers, see Section IV-B). Service times are
exponentially distributed with rate µF at fast servers and
rate µS < µF at slow servers (for general service times,
see Section IV-A). The overall capacity of the system is
µF kF + µSkS = 1. Each server has its own dedicated queue
and processes the jobs in its queue in first-come first-served
(FCFS) order.

Jobs arrive to the system as a Poisson process with rate λk.
Upon arrival, a job is dispatched to a single server according
to some dispatching policy. We assume that the dispatcher has
limited information, both about jobs and about servers: the
dispatching decision can be based on queue length information
(for which the dispatcher can query individual servers), but it
cannot be based on any information about job sizes or server
speeds. In particular, we consider the setting in which the
dispatcher does not have any information about server speeds.

We consider several dispatching policies, beginning with
two well-studied heterogeneity-unaware policies. Under Join-
the-Shortest-Queue(d) (JSQ(d)), when a job arrives the dis-
patcher queries d servers uniformly at random. The job is
dispatched to the queried server with the fewest jobs in its
queue (including the job in service, if there is one). Under
Join-Idle-Queue (JIQ), the dispatcher maintains a queue of
idle servers. When a job arrives, it is dispatched to an idle

Fig. 1. Taxonomy of policies we consider.

server (in FIFO order) if there are any, and to a busy server
chosen uniformly at random otherwise.

The dispatching policies that we propose are based on
a novel heuristic, called accomplishment, that allows the
dispatcher to use server heterogeneity information without
knowing server speeds a priori or attempting to measure them.

Definition 1: A server i’s accomplishment at time t, de-
noted by ai(t), is the number of jobs that have been dispatched
to server i by time t. Server i is more accomplished than
server j at time t if ai(t) > aj(t). When the time is clear
from context, we will drop the t in our notation and write ai.

We use the idea of server accomplishment to augment
several existing heterogeneity-aware dispatching policies. In
our “A+” version of each policy, we replace server speed
information with server accomplishment, making the “A+”
policies suitable for settings where server speeds are unknown.
In the sections that follow, we will review each of these exist-
ing policies and then define the accomplishment-based policy
augmentations. Figure 1 gives a hierarchy of the dispatching
policies studied in this paper.

III. PERFORMANCE EVALUATION

In this section, we describe how to apply the accomplish-
ment heuristic to four heterogeneity-aware dispatching poli-
cies: Join-Idle-Queue, Balanced Routing, Shortest-Expected-
Delay(d), and Join-the-Shortest-Queue(dF , dS). We define the
“A+” version of each policy and compare its mean response
time, E[T], to that of the baseline heterogeneity-unaware pol-
icy and the heterogeneity-aware “parent” policy. Throughout,
we present simulation results for a system with k = 1000
servers and we set d = 4 for JSQ(d) and its descendants; 95%
confidence intervals were all less than 2%.

A. Accomplishment+Join-Idle-Queue

We begin by incorporating the accomplishment heuristic
into a heterogeneity-aware version of JIQ. Under all versions
of JIQ, the dispatcher maintains a queue of idle servers. An
arriving job is dispatched to an idle server if there is one, and to
a server chosen uniformly at random if not. The versions differ
in how ties are broken among multiple idle servers. Under
Join-Idle-Queue-Known-Speeds (JIQ-KS), ties are broken in
favor of the fastest idle server. Under Accomplishment+JIQ
(A+JIQ), ties are broken in favor of the most accomplished
idle server, thereby approximating JIQ-KS.

Figure 2 compares E[T] under JIQ, JIQ-KS, and A+JIQ.
As λ increases, E[T] under JIQ—which breaks ties among



(a) qF = 0.2, r = 5 (b) qF = 0.5, r = 2 (c) qF = 0.8, r = 1.5

Fig. 2. E[T] as a function of λ under JIQ, A+JIQ, and JIQ-KS for three different settings of qF and r.

Fig. 3. Number of jobs accomplished by each server (ordered by accomplish-
ment) under JIQ, A+JIQ, and JIQ-KS, after 2×106 arrivals, where qF = 0.5,
r = 2, and λ = 0.2.

idle servers in FIFO order—improves. When arrivals are
more frequent, a busy fast server is likely to return to the
idle queue before a busy slow server. This means that fast
servers are more frequently at head of the idle queue, so
jobs are dispatched to fast servers disproportionately often, in
turn decreasing E[T]. On the other hand, E[T] under JIQ-KS
remains constant as long as kλ < kFµF , i.e., if the fast servers
have enough capacity to maintain stability without needing
the slow servers. Once λ is high enough that the slow servers
are needed to ensure stability, E[T] under JIQ-KS begins to
increase. E[T] under A+JIQ falls between that under JIQ and
JIQ-KS at all values of λ. By sorting idle-queues by server
accomplishment, A+JIQ provides a significant improvement in
E[T] compared to JIQ, even in the low λ, high r setting where
JIQ performs poorly. This result demonstrates that using the
accomplishment heuristic can shrink the E[T] gap between JIQ
and JIQ-KS, despite the lack of server speed information.

Figure 3 compares the servers’ accomplishment levels after
2 × 106 arrivals. Under all three variants of JIQ, the fast
servers consistently have higher accomplishments than the
slow servers. Notably, the fast servers’ accomplishments are
similar under JIQ-KS and A+JIQ, and are higher under these
two policies than under baseline JIQ. This illustrates that the
low response time achieved by heterogeneity-aware policies is
driven by the proportion of jobs dispatched to fast servers.

B. Accomplishment+Balanced Routing

We next consider Balanced Routing, a heterogeneity-aware
“descendant” of JSQ(d). Under both the baseline and the
A+ versions of Balanced Routing, when a job arrives the

dispatcher queries d servers and sends the job to the queried
server with the fewest jobs in its queue (including the job in
service, if there is one). The difference between the baseline
and A+ versions lies in the probabilities with which the d
servers are selected. Under Balanced Routing (BR), servers
are queried with probabilities proportional to their speeds:
server i is queried with probability µi∑k

j=1 µj
. For the setting

in which server speeds are unknown, we use each server i’s
accomplishment to compute its estimated speed, µest

i . Let
aRAND(t) = N(t)/k denote the expected number of jobs
accomplished by server i by time t under random dispatching,
where N(t) is the total number of jobs that have arrived to
the system by time t. We set µest

i (t) ≡ ai(t)/a
RAND(t). Un-

der Accomplishment+BR (A+BR), servers are queried with
probabilities proportional to their accomplishments: server i is
queried with probability µest

i∑
j µ

est
j

= ai∑k
j=1 aj

.
Intuitively, under A+BR the query probabilities are deter-

mined by asking “how accomplished is this server compared to
the expected accomplishment under random dispatching?” We
expect faster servers to be more accomplished by time t under
BR than under random dispatching, thus faster servers tend
to have higher estimated speeds. As a result, fast servers are
queried more often. This in turn increases their accomplish-
ment, creating a feedback loop in which more accomplished
servers become even more likely to be queried in the future.

Figure 4 shows E[T] under JSQ(d), BR, and A+BR. As
under the JIQ-based policies, when r is low all three policies
perform similarly because the system is relatively homoge-
neous. At high r, JSQ(d) does not perform as well as BR
and A+BR because it does not take advantage of the larger
difference between fast and slow server speeds.

A+BR performs somewhat similarly to JSQ(d) when λ is
low, and increasingly close to BR when λ is high. At low
λ most queues tend to be idle, so joining the shortest queue
among d queried servers often amounts to random routing
among those d servers. In this case, all servers tend to have
similar accomplishment values, and so A+BR makes similar
querying and dispatching decisions to JSQ(d). As λ increases,
both fast and slow servers are busy more often; because fast
servers complete their assigned jobs more quickly than slow
servers, they in turn are dispatched more jobs. Indeed, at
high λ the fast servers are more accomplished than slow
servers by approximately a factor of r: in this regime the



(a) qF = 0.2, r = 5 (b) qF = 0.5, r = 2 (c) qF = 0.8, r = 1.5

Fig. 4. E[T] as a function of λ under BR, A+BR, and JSQ(d) for three different settings of qF and r.

(a) qF = 0.2, r = 5 (b) qF = 0.5, r = 2 (c) qF = 0.8, r = 1.5

Fig. 5. E[T] as a function of λ under SED(d), A+SED(d) with and without the initial easing policy, and JSQ(d) for three different settings of qF and r.

accomplishment-based approximation of server speeds is quite
accurate, and so A+BR and BR converge.

That A+BR performs as well as it does is perhaps surprising:
unlike A+JIQ, which relies on the accomplishment heuristic
only to estimate the ordering of servers by their speeds, A+BR
uses accomplishment to estimate the actual speed of each
server. The BR policy, then, is likely to be much more sensitive
to errors in estimating µ. Nonetheless, our results demonstrate
that A+BR typically performs very similarly to BR.

C. Accomplishment+Shortest-Expected-Delay(d)

We now turn to Shortest-Expected-Delay(d), another
heterogeneity-aware “descendant” of JSQ(d). Under both the
baseline and A+ versions of SED(d), when a job arrives
the dispatcher queries d servers chosen uniformly at random
and computes the expected delay at each queried server i,
denoted D̄i. The job is dispatched to the queried server
i with the smallest D̄i. The versions of SED(d) differ in
how D̄i is computed. Under Shortest-Expected-Delay(d), we
set D̄i = Ni+1

µi
, where Ni denotes the number of jobs at

server i. In order to calculate expected delay when speeds
are unknown, we must estimate server speeds. Consistent
with the server speed estimation used for Balanced Routing,
we set µest

i (t) ≡ ai(t)/a
RAND(t) for each server i. Under

Accomplishment+SED(d) (A+SED(d)), we set D̄i = Ni+1
µest
i

.
Surprisingly, as defined, A+SED(d) yields higher E[T] than

JSQ(d) (see Figure 5). Figure 6 illustrates why: A+SED(d) fre-
quently misestimates server speeds by a considerable margin.
To understand why this misclassification occurs, observe that
the dispatching decisions for the earliest arrivals significantly
impact the dispatching decisions made in the future. Because
all servers start with zero accomplishment, a server that is
not assigned any jobs early on will have significantly lower

Fig. 6. Estimated speed, µesti (t) ≡ ai(t)/a
RAND(t), compared to actual

speed, µi, after 100,000 arrivals without easing (top) and with easing (bottom).

accomplishment than its expectation under random. Thus, its
estimated speed will be much slower than its actual speed.

We resolve this challenge with an “easing policy” that
sets µest = 1 for all servers for the first 20 000 arrivals,
effectively running JSQ(d) for this period. This ensures that
all servers receive some jobs while also allowing the fast
servers to become more accomplished than slow servers. The
easing policy increases the accuracy of the µest values (see
Figure 6). Figure 5 shows that, when r is low, A+SED(d) with
the easing policy yields similar E[T] to SED(d). This speaks
volumes about the value of the accomplishment heuristic:



(a) qF = 0.2, r = 5 (b) qF = 0.5, r = 2 (c) qF = 0.8, r = 1.5

Fig. 7. E[T] as a function of λ under JSQ(4), JSQ(2,2), and A+JSQ(2,2) for three different settings of qF and r.

Fig. 8. Mean response time as a function of λ under JSQ(4), JSQ(2,2), and
A+JSQ(2,2) when d = 4, dF = 3, and s = qF . Here qF = 0.8 and r = 1.5.

even though SED(d) is sensitive to detailed server speed
information, A+SED(d) often can match its performance.

The need for the easing policy demonstrates that care must
be taken when augmenting heterogeneity-aware policies with
the accomplishment heuristic. While a server’s accomplish-
ment can offer a useful proxy for the server’s speed, the
ultimate performance of an A+ policy depends on the in-
teraction between dispatching decisions and accomplishment.
With A+SED(d) without the easing policy, this interaction
causes a performance degradation—in stark contrast to A+BR
and A+JIQ. As such, when determining how to apply the
accomplishment heuristic to a new policy, one must carefully
assess whether the interaction between accomplishment and
the dispatching policy will lead to a positive or negative
feedback loop, and then adjust the balance of exploring a large
number of servers and exploiting the information provided by
the servers’ accomplishment values accordingly.

D. Accomplishment+Join-the-Shortest-Queue(dF , dS)

Finally, we consider the JSQ(dF , dS) policy, a descendant
of JSQ-d designed specifically for heterogeneous systems.

Under JSQ(dF , dS), when a job arrives the dispatcher
queries dF fast servers and dS slow servers, where dF +dS =
d, a constant. If any of the queried fast servers are idle, the job
is dispatched to an idle fast server. If all queried fast servers
are busy and any of the queried slow servers are idle, the job
is dispatched to an idle slow server with probability pS and to
the queried fast server with the shortest queue with probability
1 − pS . If all queried servers are busy, the job is dispatched

to the queried fast server (respectively, slow server) with the
shortest queue with probability pF (respectively, 1−pF ). The
probabilities pF and pS are chosen optimally to minimize
E[T], given system parameters µF , µS , qF , qS , and λ.

JSQ(dF , dS) is highly sensitive to the detailed server speed
information: pF and pS are optimized based on µF , µS ,
qF , and qS . Absent accurate knowledge of these system
parameters, it is infeasible to optimize the policy parameters.
We propose the A+JSQ(dF , dS) policy, which uses server
accomplishment to capture the spirit of JSQ(dF , dS) without
requiring detailed server speed information.

Under A+JSQ(dF , dS), when a job arrives the dispatcher
queries dF servers from among the ks most accomplished
servers and dS servers from among the k(1− s) least accom-
plished servers, where s is a policy parameter capturing the
dispatcher’s estimate of qF . The job is then dispatched to the
queried server with the shortest queue.

We note that the performance of A+JSQ(dF , dS) is sensitive
to the choice of the policy parameter s. In this section we
set s = qF , which yields the best performance, thereby
demonstrating the potential of A+JSQ(dF , dS). Throughout
this section, unless otherwise specified, we set dF = dS = 2.

Figures 7(a) and (b) compare E[T] under A+JSQ(dF , dS) to
that under JSQ(d) and JSQ(dF , dS) at moderate to high r and
low to moderate qF . At low λ, A+JSQ(dF , dS) performs sim-
ilarly to JSQ(d). As λ increases, E[T] under A+JSQ(dF , dS)
actually decreases, eventually matching the performance of
its fully heterogeneity-aware counterpart at higher load. The
idea behind A+JSQ(dF , dS) is that it is beneficial to guarantee
that some fast servers are always included in the query. The
accomplishment heuristic can only help achieve this if fast
servers do in fact receive more jobs than slow servers. When
λ is very low, this does not occur because most servers are
idle and thus receive similar numbers of jobs. As λ increases,
queues build up at all servers; the fast servers complete their
jobs more quickly than the slow servers, so they tend to have
shorter queues, and, in turn, they become more accomplished.
Thus, at high λ, the accomplishment heuristic has the desired
effect of successfully sorting servers by their speeds.

When r is low and qF is high (Figure 7(c)), we see the
opposite results: JSQ(d) in fact outperforms JSQ(dF , dS) and
A+JSQ(dF , dS) at high load. This performance reversal is



(a) qF = 0.2, r = 5 (b) qF = 0.5, r = 2 (c) qF = 0.8, r = 1.5

Fig. 9. E[T] as a function of λ under JSQ(4) and A+JSQ(2,2), where service times are generally distributed.

Fig. 10. Mean response time as a function of λ under JSQ(4) and A+JSQ(2,2),
where service times are generally distributed, and d = 4, dF = 3, and
s = qF . Here qF = 0.8 and r = 1.5.

a consequence of the specific parameter settings used for
A+JSQ(dF , dS). In particular, we have qF = 0.8, d = 4,
and dF = 2, meaning that only half of the queried servers
are fast even though 80% of the servers are fast: fast servers
are underrepresented in the query. Figure 10 shows results for
the same setting, using dF = 3 instead of dF = 2, i.e., the
fast servers are queried with probability roughly proportional
to the fraction of servers that are fast. Here we see that
A+JSQ(dF , dS) consistently outperforms JSQ(d).

IV. EXTENSIONS AND GENERALIZATIONS

In this section we evaluate the performance of the accom-
plishment heuristic in more realistic settings. Throughout, in
the interest of brevity, we focus on A+JSQ(dF , dS). While we
do not show our results for other policies, the lessons that we
learn from studying A+JSQ(dF , dS) in more general settings
apply to all of the policies we introduce in Section III.

A. General Service Times

Thus far, we have assumed that service times are exponen-
tially distributed. We now turn to general service times and
evaluate the sensitivity of our results to service time variability.

We consider four different service time distributions. Given
qF and r, for all four distributions we let the mean service time
on fast servers and slow servers be 1

µF
and 1

µS
respectively,

where µF = r · µS and µF qF + µSqS = 1 (see Section II).
The first two distributions are the exponential (see Section III)

and the two-phase Erlang. The remaining two distributions
are two-phase hyperexponentials; the service time on the slow
servers is drawn from the distribution H2(p1;µ1, µ2), where
p1
µ1

+ 1−p1
µ2

= 1
µS

and p1
µ1

= p2
µ2

(the service time distribution
on the fast servers is defined analogously). We consider two
hyperexponential distributions with squared coefficients of
variation C2 = 10 and C2 = 50 respectively.

In Figures 9(a) and (b) we see that A+JSQ(dF , dS) outper-
forms JSQ(d) by a similar margin regardless of the service
time variability, for the same three system configurations con-
sidered throughout Section III. The opposite trend is evident
in Figure 9(c), for the same reason as in Section III-D: in this
case, the fast servers are underrepresented in the query. As
before, when we set dF = 3, A+JSQ(dF , dS) consistently
outperforms JSQ(d) (see Figure 10). Unsurprisingly, mean
response time increases with service time variability for all
system parameter settings.

Our results indicate that the strong performance of
A+JSQ(dF , dS) is insensitive to the service time distribution.
This suggests that our A+ policies remain good candidates
for achieving low mean response time when server speeds are
unknown in settings with highly variable service times, as is
more realistic in many practical systems.

B. More Than Two Server Classes

So far we have restricted our attention to settings with only
two server speeds; this may be unrealistic in practice. For
example, a system can comprise of different server hardware
generations, or certain virtual machines may experience more
resource contention than others. We now extend our results to
this more general setting.

We consider three different systems with four classes of
servers, each with a different set of server speeds and dis-
tribution of servers among the four classes. In all cases, the
average service rate is 1; hence, we consider servers with rate
µ > 1 to be “fast” and servers with rate µ < 1 to be “slow.”

There are many ways in which one could generalize the
A+JSQ(dF , dS) policy for more than two server speeds; we
study one relatively simple such generalization, defined as fol-
lows. Upon each job’s arrival the dispatcher queries d servers,
of which dF are chosen from among the sk most accomplished
servers and dS are chosen from among the (1 − s)k least



(a) ~µ = (0.45, 0.65, 0.9, 2) (b) ~µ = (0.7, 1, 1.35, 2) (c) ~µ = (0.6, 0.77, 1.1, 3)
~q = (0.25, 0.25, 0.25, 0.25) ~q = (0.6, 0.133, 0.133, 0.134) ~q = (0.3, 0.433, 0.167, 0.1)

Fig. 11. Mean response time as a function of λ for JSQ(d) and A+JSQ(dF , dS ) with in systems with four server classes, where ~µ = (µ1, . . . , µ4) gives the
speeds of all classes, and ~q = (q1, . . . , q4) gives the distribution of servers across the four classes.

accomplished servers. That is, even though there are more
than two server classes, the dispatcher continues to classify
servers into only two groups. Choosing s is challenging in
this setting, and, as noted in Section III-D, the choice of s can
substantially impact the system’s performance. Our results in
this section are for s ∈ {0.1, 0.2, 0.3, 0.4}; when s is low,
there are relatively few slow servers that are classified as fast.

A+JSQ(dF , dS) reduces E[T] relative to JSQ(d) for most
values of s that we consider (see Figure 11; we omit
JSQ(dF , dS), which is not well defined in this setting). JSQ(d)
only outperforms A+JSQ(dF , dS) when s = 0.1. Here,
the fastest server class contains more than sk servers, so
A+JSQ(dF , dS) quries the fastest servers less frequently than
the uniform querying used by JSQ(d). When s is higher
A+JSQ(dF , dS) outperforms JSQ(d) because A+JSQ(dF , dS)
queries the fast servers more often than JSQ(d).

As defined, A+JSQ(dF , dS) is not optimal in the many-
speed setting. Opportunities for further improvement include
classifying servers into more than two speed categories, using
accomplishment data (see Figure 3) to learn the appropriate
cutoffs between server classes, and choosing which server
classes to query probabilistically, as in [3]. Nonetheless, our
results demonstrate that the accomplishment heuristic contin-
ues to be a useful tool in this more realistic setting.

C. Changing Server Speeds

In some systems, server speeds are unlikely to stay fixed
over time. For example, migration of a VM could cause the
VM’s speed to change at certain points in time. When server
speeds change, the accomplishment-based predictions of rela-
tive server speeds—upon which our A+ policies rely—could
suddenly become inaccurate. Here we evaluate the robustness
of the accomplishment heuristic to changes in server speeds.

Figure 12 shows, as a function of the total number of
arrivals to the system, the fraction of servers that are actually
{fast,slow} and that are classified as {fast,slow}. We consider
two scenarios: one in which each server’s speed changes with
probability 0.4 after relatively few arrivals, and the other in
which the speeds change after many arrivals. In the former
setting, only a short amount of time is required for the

Fig. 12. Fraction of servers that are actually fast and classified fast (light
purple), actually slow and classified fast (dark purple), actually fast and
classified slow (light green), and actually slow and classified slow (dark
green). Here r = 1.5, λ = 0.5, and the probability that a server changes
speed is 0.4. The server speed changes occur after 50 000 arrivals (left) or
300 000 arrivals (right).

classification to return to near-perfect accuracy, whereas in
the latter setting the recovery is slow. After many arrivals, the
(initially) fast servers have far higher accomplishments than
the slow servers (see, e.g., Figure 3); after the speeds change,
many arrivals are needed before the newly-fast servers’ ac-
complishments can catch up to those of their initially-fast
counterparts. The consequence of this slow recovery time is
that mean response time, in turn, will suffer, as many jobs will
be dispatched to servers that are mistakenly classified as fast.

Motivated by this observation, we modify the A+ policies
so that the dispatcher stores only a partial history of servers’
accomplishments. Specifically, we track each server’s accom-
plishment over only the most recent 40 000 arrivals, grouped
in “buckets” of 10 000 arrivals; after each 10 000 arrivals
to the system, we discard the information in each server’s
oldest “bucket.” Thus, out-of-date information collected prior
to server speed changes will be discarded quickly.

We evaluated the performance of the partial-history accom-
plishment for a wide range of parameter settings; Figure 13
shows the results for a few cases that illustrate the overall
patterns. We note that the classification accuracy depends on
qF , λ, r, and the probability with which speeds change, with
higher accuracy associated with higher values of both λ and
r, lower probabilities of changing speeds, and values of qF
close to 0.5. Importantly, regardless of the system parameters,



Fig. 13. Fraction of servers that are actually fast and classified fast (light
purple), actually slow and classified fast (dark purple), actually fast and
classified slow (light green), and actually slow and classified slow (dark green)
with partial-history accomplishment. In all cases, r = 1.5, λ = 0.5, and
server speeds change with probability 0.4. Top: qF = 0.2; bottom: qF = 0.5.
The speed changes occur after 50 000 arrivals (left) or 300 000 arrivals (right).

the time to recover near-perfect server classification no longer
depends on the number of arrivals before which the server
speeds changed, indicating that tracking only a short accom-
plishment history is a successful strategy for maintaining good
performance in scenarios when server speeds might change.

V. CONCLUSION

This paper studies dispatching in large-scale, heterogeneous
systems in which the dispatcher has limited information about
server speeds. We propose a novel heuristic called server
accomplishment that allows us to estimate server speeds in
this setting. We show that the accomplishment heuristic can
be incorporated into many state-of-the-art dispatching policies
designed for systems in which server speeds are known,
including Join-Idle-Queue, Shortest-Expected-Delay(d), Bal-
anced Routing, and Join-the-Shortest-Queue(dF , dS). Our nu-
merical results demonstrate that our “A+” accomplishment-
based variants often are capable of closing most of the
performance gap between heterogeneity-unaware policies and
heterogeneity-aware policies with full speed information.

Tracking server accomplishment is one way to incorpo-
rate memory in a dispatching policy. Other work involving
memory-based dispatching includes [1], [8], [12]. These pa-
pers focus on homogeneous systems, and memory is typically
used to identify servers that have short queues rather than to
identify fast servers. Consequently, the dispatching policies
proposed in the above papers all represent candidates for use
in conjunction with our accomplishment heuristic.

While most of our results focus on systems with two server
speeds, exponential service times, and server speeds that are
fixed over time, these assumptions are not always reasonable
in practice. We show that, even when these assumptions are
relaxed, the accomplishment heuristic provides a valuable

tool for improving performance in the heterogeneity-unaware
settings. There are ample opportunities for future work ad-
dressing practical concerns. For example, our results in Sec-
tion IV-B are for just one, fairly simple, generalization of the
A+JSQ(dF , dS) policy when there are more than two server
speeds; other approaches may yield even better performance.

Another consideration of practical importance is the com-
munication budget available to the dispatcher. Each of our
“A+” policy variants requires no more communication be-
tween the dispatcher and the servers than the baseline policy
upon which the A+ variant is based. This gives the A+
heuristic an advantage over, for example, policies that try
to directly learn the server speeds, as such policies would
require more frequent communication between the dispatcher
and the servers. However, there has been considerable recent
work focusing on settings in which communication must be
limited to far fewer than the O(d) messages per job required by
power-of-d policies. Another direction for future work involves
incorporating the accomplishment heuristic into new policies
that have a severely restricted communication budget.

REFERENCES

[1] J. Anselmi and F. Dufour. Power-of-d-choices with memory: Fluid limit
and optimality. Mathematics of Operations Research, 45(3):862–888,
2020.

[2] H. Chen and H.-Q. Ye. Asymptotic optimality of balanced routing.
Operations research, 60(1):163–179, 2012.

[3] K. Gardner, J. A. Jaleel, A. Wickeham, and S. Doroudi. Scalable
load balancing in the presence of heterogeneous servers. Performance
Evaluation, page 102151, 2020.

[4] V. Gupta, M. Harchol-Balter, K. Sigman, and W. Whitt. Analysis
of join-the-shortest-queue routing for web server farms. Performance
Evaluation, 64(9-12):1062–1081, 2007.

[5] A. Izagirre and A. Makowski. Light traffic performance under the
power of two load balancing strategy: the case of server heterogeneity.
SIGMETRICS Performance Evaluation Review, 42(2):18–20, 2014.

[6] Y. Lu, Q. Xie, G. Kliot, A. Geller, J. Larus, and A. Greenberg. Join-
idle-queue: A novel load balancing algorithm for dynamically scalable
web services. Performance Evaluation, 68(11):1056–1071, 2011.

[7] M. Mitzenmacher. The power of two choices in randomized load
balancing. IEEE Transactions on Parallel and Distributed Systems,
12(10):1094–1104, 2001.

[8] M. Mitzenmacher, B. Prabhakar, and D. Shah. Load balancing with
memory. In The 43rd Annual IEEE Symposium on Foundations of
Computer Science, 2002. Proceedings., pages 799–808. IEEE, 2002.

[9] A. Mukhopadhyay and R. Mazumdar. Analysis of randomized join-the-
shortest-queue (jsq) schemes in large heterogeneous processor-sharing
systems. IEEE Transactions on Control of Network Systems, 3(2):116–
126, 2016.

[10] R. D. Nelson and T. K. Philips. An approximation to the response time
for shortest queue routing, volume 17. ACM, 1989.

[11] A. Stolyar. Pull-based load distribution in large-scale heterogeneous
service systems. Queueing Systems, 80(4):341–361, 2015.

[12] M. van der Boor, S. Borst, and J. van Leeuwaarden. Hyper-scalable jsq
with sparse feedback. Proceedings of the ACM on Measurement and
Analysis of Computing Systems, 3(1):1–37, 2019.

[13] N. Vvedenskaya, R. Dobrushin, and F. Karpelevich. Queueing system
with selection of the shortest of two queues: An asymptotic approach.
Problemy Peredachi Informatsii, 32(1):20–34, 1996.

[14] R. R. Weber. On the optimal assignment of customers to parallel servers.
Journal of Applied Probability, 15(2):406–413, 1978.

[15] W. Winston. Optimality of the shortest line discipline. Journal of Applied
Probability, 14(1):181–189, 1977.

[16] X. Zhou, F. Wu, J. Tan, Y. Sun, and N. Shroff. Designing low-
complexity heavy-traffic delay-optimal load balancing schemes: Theory
to algorithms. Proceedings of the ACM on Measurement and Analysis
of Computing Systems, 1(2):39, 2017.


