
Smart Dispatching in Heterogeneous Systems

Kristen Gardner
Amherst College

Department of Computer Science

kgardner@amherst.edu

Cole Stephens
Amherst College

Department of Computer Science

cstephens19@amherst.edu

1. INTRODUCTION
In multi-server systems, selecting to which server to dis-

patch an arriving job is a key factor influencing system re-
sponse time. One of the most widely studied policies is
Join-the-Shortest-Queue (JSQ), which is known to minimize
mean response time in certain settings [7]. Many variants
on JSQ have been proposed, including JSQ-d, under which
a job is dispatched to the shortest queue among d servers
selected uniformly at random [3, 5]; Join-Idle-Queue (JIQ),
under which the dispatcher knows which servers are idle but
not the queue lengths of non-idle servers [2]; and others.

The vast majority of work analyzing JSQ and related poli-
cies makes a key assumption: that the system is homoge-
neous, meaning that all servers have the same speed. This
assumption is inaccurate in most modern computer systems.
Server heterogeneity can arise, e.g., when a server farm con-
sists of several generations of hardware, or when many vir-
tual machines contend for resources on the same physical
machine. Unfortunately, the wealth of results about how
best to dispatch in homogeneous systems does not trans-
late well to heterogeneous systems. Policies like JSQ-d and
JIQ, which can achieve near-optimal performance in homo-
geneous systems, can lead to unacceptably high response
times and even instability in heterogeneous systems [4, 8].

Heterogeneous systems offer an opportunity to design poli-
cies that leverage differing server speeds to make smarter
dispatching decisions. We focus on “power-of-d” policies,
which, upon a job’s arrival, poll some constant number of
servers and dispatch the job to one of the polled servers.
There are two primary moments at which such policies can
favor faster servers: when selecting which servers to poll, and
when selecting to which of the polled servers to dispatch the
job. The second approach is used by policies such as Short-
est Expected Delay (SED), under which an arriving job is
dispatched to the server at which its expected response time
(calculated by scaling the number of jobs at the server by
the server’s speed) is shortest [1, 6]. This requires knowing
the speed of every server.

In this paper, we focus on heterogeneous systems in which
the dispatcher may not know the exact speed of every server,
or even which servers are “fast” and which are “slow.” Even
absent detailed server speed information, we show that it is
possible to design policies that outperform those designed
for homogeneous settings. In Section 3, we propose and
analyze the JSQ-(dF , dS) policy for systems in which the

Copyright is held by author/owner(s).

Figure 1: The system model.

identities of servers (“fast” or “slow”) are known, but not
the servers’ exact speeds. In Section 4, we propose the JSQ-
DAS policy, which successfully identifies fast servers when
the dispatcher does not know server identities a priori. Both
policies are successful at achieving low mean response time
even when the dispatcher has limited information.

2. MODEL
Our system consists of k servers (see Figure 1). Of these,

kF = k · p are “fast” servers and kS = k − kF are “slow”
servers. Service times are exponentially distributed; fast and
slow servers work at rates µF and µS < µF respectively.
Jobs arrive to the system as a Poisson process with rate λk.
We assume that the total system arrival rate is less than the
total service rate; i.e., λk < µF kF + µSkS . Upon arrival, a
job is dispatched immediately to a single server according to
some policy. Each server works on the jobs in its queue in
first-come first-served (FCFS) order; there is no preemption.

3. SETTING 1: UNKNOWN SERVER SPEEDS
We begin with the setting in which the dispatcher knows

which servers are “fast” and which are “slow,” but does not
know the exact speed of any server. We introduce the JSQ-
(dF , dS) dispatching policy, defined as follows.

Definition 1. Under the JSQ-(dF , dS) dispatching pol-
icy, when a job arrives to the system, it polls dF fast servers,
chosen uniformly at random without replacement. If any of
these dF fast servers are idle, the job begins service on an
idle fast server (where ties are broken uniformly at random).
If none of the dF polled fast servers are idle, the job then
polls dS slow servers. If any of these dS slow servers are
idle, the job begins service on an idle slow server (where ties
are broken uniformly at random). If none of the dS polled
slow servers are idle, the job joins the shortest queue among
the dF polled fast servers.



Intuitively, a job is best off if it gets to begin service imme-
diately, where it is better to run on a fast server than a slow
server. However, if there are no idle servers available, the
job prefers to wait in the queue at a fast server.

3.1 Analysis
We derive an approximation for mean response time un-

der this policy. Throughout, we will assume that k → ∞,
and that, in this limiting regime, all servers are idle inde-
pendently with probability 1− ρF for fast servers and with
probability 1− ρS for slow servers.

We begin by deriving ρF and ρS :

ρS = λkP
{

job runs on
a slow server

}
· 1

µSkS
=
λρdFF (1− ρdSS )

µS(1− p)

ρF = λkP
{

job runs on
a fast server

}
· 1

µF kF
=
λ
(

(1− ρdFF ) + ρdFF ρdSS

)
µF p

.

Solving this system of equations, numerically if an exact
analytical solution is not possible, yields ρF and ρS .

To find E [T ], we first condition on the number of idle
servers found by an arriving job (here we use the assumption
that servers are idle independently):

E [T ] = E [T |idle fast servers] ·P {idle fast servers}
+ E

[
T
∣∣no idle fast servers,

idle slow servers

]
·P
{
no idle fast servers,
idle slow servers

}
+ E

[
T
∣∣no idle fast servers,
no idle slow servers

]
·P
{
no idle fast servers,
no idle slow servers

}
=

1

µF
· (1− ρdFF ) +

1

µS
· ρdFF (1− ρdSS )

+ ρdFF ρdSS ·E
[
T
∣∣no idle fast servers,
no idle slow servers

]
. (1)

We next need to derive E
[
T
∣∣no idle fast servers,
no idle slow servers

]
. In this

case, the job joins the shortest queue among the dF polled
fast servers, all of which are busy. To derive response time,
we first need to determine the distribution of the number of
jobs in a fast server’s queue.

We take an approach similar to Mitzenmacher’s analysis
of JSQ in homogeneous systems [3]. Let ni(t) denote the
number of fast servers with exactly i jobs in the queue (in-
cluding the job in service, if there is one) at time t. Let
mi(t) denote the number of fast servers with at least i jobs
at time t. Let fi(t) = ni(t)/kF be the fraction of fast servers
with exactly i jobs, and let si(t) =

∑∞
j=i fi(t) = mi(t)/kF

be the fraction of fast servers with at least i jobs, so the si’s
are the tails of the fi’s. Note that s0(t) = 1 for all t.

As in [3], we consider a deterministic limiting system and
express its behavior using a system of differential equations.
We consider the expected change in the number of queues
with at least i > 1 jobs over a small interval of time dt. This
number will increase if an arriving job joins the queue at a
fast server with exactly i − 1 jobs. The rate at which jobs
arrive to the system is λk; with probability sdFi−1−s

dF
i all dF

of the servers polled by the arriving job have at least i − 1
jobs, but not all dF of the servers have at least i jobs (that
is, the shortest queue among the dF servers contains exactly
i jobs); and with probability ρdSS all ds of the polled slow
servers are busy. The number of queues with at least i > 1
jobs will decrease if a job departs from a queue with exactly
i jobs. This happens with rate µF kF (si − si+1). Putting
this together, we have, for i > 1:

dmi

dt
= λk

(
sdFi−1 − s

dF
i

)
ρdSS − µF kF (si − si+1).

The case where i = 1 is similar, except here an arriving job
that finds a server with i−1 = 0 jobs in the queue will enter
service on that server instead of polling slow servers:

dm1

dt
= λk

(
sdF0 − s

dF
1

)
− µF kF (s1 − s2).

Dividing all terms by kF gives us a system of differential
equations for the si terms:

ds1
dt

=
λ

p

(
sdF0 − s

dF
1

)
− µF (s1 − s2) (2)

dsi
dt

=
λ

p

(
sdFi−1 − s

dF
i

)
ρdSS − µF (si − si+1), i > 1 (3)

s0 = 1,

recalling that p = kF
k

is the fraction of servers that are fast.

By setting dsi
dt

= 0 for all i, we can find a fixed point for
this system and solve for the si terms. We start by summing
equation (2) and (3) for all i > 1:

∞∑
i=1

dsi
dt

= 0 =
λ

p

(
sdF0 − s

dF
1

)
− µF (s1 − s2)

+

∞∑
i=2

(
λ

p

(
sdFi−1 − s

dF
i

)
ρdSS − µF (si − si+1)

)

0 =
λ

p

(
sdF0 − s

dF
1 + ρdSS

∞∑
i=2

(
sdFi−1 − s

dF
i

))

− µF

∞∑
i=1

(si − si+1)

0 =
λ

p

(
1− sdF1 + ρdSS sdF1

)
− µF s1

0 =
λ

p

(
1− sdF1

(
1− ρdSS

))
− µF s1, (4)

from which we can now solve for s1. For some values of dF ,
a closed-form solution exists. In other cases that do not per-
mit a closed-form solution, we can solve for s1 numerically.

We then find the remaining si values using the recurrence

λ

p
(sdFi−1 − s

dF
i )ρdSS − µF (si − si+1) = 0.

Once we have determined the si terms, we are ready to
return to equation (1) to find E

[
T |no idle fast servers,

no idle slow servers

]
:

E
[
T
∣∣no idle fast servers,
no idle slow servers

]
=

∞∑
i=1

P {job joins queue with i jobs} · i · 1

µF

=
1

µF

∞∑
i=1

i ·
sdFi − s

dF
i+1

sdF1
. (5)

Note that the probability that a job joins a queue with i
servers is not the same as the probability that a server has
i jobs in its queue. Combining (1) and (5) gives the overall
system mean response time.

4. SETTING 2: UNKNOWN SERVER IDEN-
TITIES

We now turn to a setting in which the dispatcher has
even less information: here we assume that the dispatcher
knows what fraction of servers, p, are fast, but does not know
which servers are fast or the speeds of fast and slow servers.



λ

0 0.2 0.4 0.6 0.8 1

E
[T

]

0

1

2

3

4
JSQ-DAS

JSQ-(df , ds)

JSQ-d

SED-d

JSQ

Figure 2: Mean response time as a function of λ
under five dispatching policies.

To identify the fast servers, we use a novel heuristic called
accomplishment sampling. We define a server’s accomplish-
ment to be the number of jobs that have been dispatched
to that server. The JSQ-DAS (JSQ-d with Accomplishment
Sampling) policy uses the idea of server accomplishment to
decide which servers to poll.

Definition 2. Under the JSQ-DAS dispatching policy,
when a job arrives to the system, it polls d servers. Of these,
0 < a < d are chosen uniformly at random without replace-
ment from among the pk most accomplished servers. The
remaining d − a servers are chosen uniformly at random
without replacement from among the (1 − p)k least accom-
plished servers. The job then joins the queue at the server
with the shortest queue among the d polled servers. Ties are
broken in favor of more accomplished servers.

The idea behind accomplishment sampling is that fast
servers are less likely to build up long queues than slow
servers, making a polled fast server more likely to have the
shortest queue. Thus, fast servers are likely to accumulate
higher accomplishment values than slow servers, giving them
a better chance of being polled in the future. Empirical re-
sults indicate that at λ > 0.6, accomplishment sampling
correctly identifies 99.9% of fast servers, allowing the policy
to nearly guarantee that at least one fast server is polled.

5. RESULTS AND DISCUSSION
In this section we evaluate our two proposed policies, JSQ-

(dF , dS) and JSQ-DAS, by comparing their performance to
that of several other well-known dispatching policies. In
addition to JSQ-(dF , dS) and JSQ-DAS, we consider JSQ,
JSQ-d, and SED-d (a low-communication variant on SED
wherein an arriving job polls d servers chosen uniformly at
random, and joins the queue at the server at which it has
the shortest expected delay). We consider a system with
k = 1000 servers and p = 0.3 (so there are kF = 300 fast
servers and kS = 700 slow servers); we set µF = 1.95 and
µS = 0.6. Hence a necessary condition for stability is λ < 1.
For all policies except JSQ, we set d = 4; for JSQ-(dF , dS)
we set dF = dS = 2, and for JSQ-DAS we set a = 2.

Figure 2 shows our results. At low load, JSQ-(dF , dS)
performs as well as SED-d. When λ is low many fast servers
are idle, and, like SED-d, JSQ-(dF , dS) gives preference to
idle fast servers over idle slow servers. Surprisingly, JSQ-
(dF , dS) outperforms SED-d at moderate values of λ. We
hypothesize that this is because JSQ-(dF , dS) favors fast

servers more strongly than SED-d does when polling. Un-
fortunately, JSQ-(dF , ds) appears to have a smaller stability
region than the other policies studied here. Intuitively, this
is because as λ gets high, it becomes impossible to main-
tain finite queue lengths for the fast servers while also not
allowing there to be any queue at the slow servers. Pre-
cisely characterizing the stability region under JSQ-(dF , dS)
remains an open problem.

Both JSQ-(dF , dS) and SED-d require some knowledge
of server speeds, or at least of which servers are slow and
which are fast. JSQ-DAS requires no such knowledge, yet
manages to outperform the former two policies in many set-
tings. At high load, JSQ-DAS has the best performance
of any of the polling policies. The accomplishment sam-
pling heuristic is extremely effective at correctly identify-
ing the fast servers when λ is sufficiently high. Like JSQ-
(dF , dS), JSQ-DAS then guarantees that some number of
polled servers are fast, overcoming one of the weaknesses of
SED-d. On the other hand, by allowing queues to build up
at the slow servers, JSQ-DAS maintains a larger stability re-
gion than JSQ-(dF , dS). At low load, JSQ-DAS does worse
than SED-d and JSQ-(dF , dS), but similarly to JSQ.

Our results are promising: both policies are able to match
or even outperform policies like JSQ and JSQ-d, which do
not use any knowledge of server heterogeneity when mak-
ing dispatching decisions, as well as policies like SED-d,
which require much more detailed heterogeneity informa-
tion. While many open questions remain, we hope that this
work provides a starting point for designing and analyzing
other dispatching policies that leverage server heterogeneity
to achieve better performance.

6. REFERENCES
[1] S. Banawan and N. Zeidat. A comparative study of

load sharing in heterogeneous multicomputer systems.
In Proceedings. 25th Annual Simulation Symposium,
pages 22–31. IEEE, 1992.

[2] Y. Lu, Q. Xie, G. Kliot, A. Geller, J. Larus, and
A. Greenberg. Join-idle-queue: A novel load balancing
algorithm for dynamically scalable web services.
Performance Evaluation, 68(11):1056–1071, 2011.

[3] M. Mitzenmacher. The power of two choices in
randomized load balancing. IEEE Transactions on
Parallel and Distributed Systems, 12(10):1094–1104,
2001.

[4] A. Stolyar. Pull-based load distribution in large-scale
heterogeneous service systems. Queueing Systems,
80(4):341–361, 2015.

[5] N. Vvedenskaya, R. Dobrushin, and F. Karpelevich.
Queueing system with selection of the shortest of two
queues: An asymptotic approach. Problemy Peredachi
Informatsii, 32(1):20–34, 1996.

[6] W. Whitt. Deciding which queue to join: Some
counterexamples. Operations research, 34(1):55–62,
1986.

[7] W. Winston. Optimality of the shortest line discipline.
Journal of Applied Probability, 14(1):181–189, 1977.

[8] X. Zhou, F. Wu, J. Tan, Y. Sun, and N. Shroff.
Designing low-complexity heavy-traffic delay-optimal
load balancing schemes: Theory to algorithms.
Proceedings of the ACM on Measurement and Analysis
of Computing Systems, 1(2):39, 2017.


