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ABSTRACT
Recent computer systems research has proposed using re-
dundant requests to reduce latency. The idea is to run a
request on multiple servers and wait for the first completion
(discarding all remaining copies of the request). However
there is no exact analysis of systems with redundancy.

This paper presents the first exact analysis of systems with
redundancy. We allow for any number of classes of redun-
dant requests, any number of classes of non-redundant re-
quests, any degree of redundancy, and any number of het-
erogeneous servers. In all cases we derive the limiting dis-
tribution on the state of the system.

In small (two or three server) systems, we derive simple
forms for the distribution of response time of both the re-
dundant classes and non-redundant classes, and we quantify
the “gain” to redundant classes and “pain” to non-redundant
classes caused by redundancy. We find some surprising re-
sults. First, the response time of a fully redundant class
follows a simple Exponential distribution and that of the
non-redundant class follows a Generalized Hyperexponen-
tial. Second, fully redundant classes are “immune” to any
pain caused by other classes becoming redundant.

We also compare redundancy with other approaches for
reducing latency, such as optimal probabilistic splitting of a
class among servers (Opt-Split) and Join-the-Shortest-Queue
(JSQ) routing of a class. We find that, in many cases, re-
dundancy outperforms JSQ and Opt-Split with respect to
overall response time, making it an attractive solution.

Categories and Subject Descriptors
G.3 [Mathematics of Computing]: Probability and Statis-
tics—Queueing theory; Markov processes
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Figure 1: The general redundancy model. Each
server j provides service at rate µj. Each class of
jobs Ci arrives to the system as a Poisson process
with rate λCi and joins the queue at all servers in
SCi = {j | server j can serve class Ci}.
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1. INTRODUCTION
Reducing latency has always been a primary concern for

computer systems designers. Recent papers have proposed
a new approach to reducing latency in multi-server systems:
using redundant requests [2, 9, 33]. The motivation be-
hind this approach comes from the observation that response
times at servers can be highly variable [11, 33]. Two servers
in the same system often differ in their current loads, their
network congestion, and the configuration of their storage
systems. Even if both servers are idle, the same request
might experience a far lower service time at one server than
another because the disk seek time could be much lower at
one server than another (seek times often dominate service
times [18]). The solution is to send the same request to
the queues at multiple servers simultaneously (i.e., redun-
dantly). When any copy of the request completes service,
all remaining copies of the request are killed.

Using redundant requests is not free. First, data must be
replicated among the set of servers to which the copies must
be sent. Furthermore, using redundant requests adds to
the system load. Nonetheless, using redundant requests has
been shown to vastly improve latency in distributed systems,



e.g., Google’s BigTable service shows a 20-fold improvement
in tail latency by using redundant requests [11].

Unfortunately, there is almost no work analyzing the ben-
efits of redundant requests. Even a two-server system with
one redundant class and one non-redundant class has not
been analyzed. The first attempts to analyze systems with
redundancy are as recent as 2014, but this work derives only
bounds and approximations [20].

Redundant requests require a new queueing paradigm:
there is no longer a single copy of each job, and redundant
copies disappear instantly as soon as one copy completes.
While redundant jobs bear some resemblance to fork-join
systems, the two models are actually quite different be-
cause all copies must complete service in a fork-join system,
whereas a redundant job only needs one copy to complete.
Likewise, while redundant jobs bear some resemblance to
coupled-processor systems, they differ in that the redundant
copies can occupy multiple servers even when these servers
have non-empty queues. Likewise, redundant jobs are not
the same as flexible servers (see Section 2 for more details).

The state space required to capture systems with redun-
dant jobs is very complex. It is not enough to know the
number of jobs in each queue, or even the number of jobs of
each class (redundant or non-redundant) within each queue.
Rather, one needs to track the exact position and type of
every job in every queue, so that one knows which jobs to
delete when a copy of a redundant job completes service.

This paper provides the first closed form exact analysis of
redundant queues. We derive the limiting distribution of the
full queue state as well as (in some cases) the distribution
of response time of each class of jobs. Our analysis assumes
Exponential service times and Poisson arrivals. Our result
applies to systems with any number of queues, k, any num-
ber of classes of jobs, `, and any redundancy structure (see
Figure 1). A class of jobs is associated with a set of servers
that hold replicated data; the jobs of a class can be run on
any of the servers associated with the class.

We also investigate how the approach of redundant re-
quests compares to other common approaches for job as-
signment. For example, how does making m redundant
copies of each request compare with optimally probabilis-
tically splitting load among m queues (Opt-Split), or with
joining the shortest of m queues (JSQ)? Furthermore, while
redundancy may benefit the redundant class, what is the
response time penalty to the other jobs in the system? Do
other approaches create less of a penalty? Finally, if one
class of jobs creates redundant copies, does that class suffer
when others “join the redundancy game” and start creating
redundant copies of their jobs as well?

We first investigate these questions in the context of three
simple models, shown in Figure 2. In the N model (Fig-
ure 2(a)), there are two arrival streams of jobs, each with its
own server. However, one class is redundant at both servers.
The N model illuminates the response time benefit to the
redundant class and the pain to the non-redundant class.
We derive the exact distribution of response time for both
classes, and explore what happens when the non-redundant
class decides that it too wants to become redundant. In the
W model (Figure 2(b)), we imagine that we have a stable
system, where each server is serving its own stream of jobs,
when a new stream of jobs arrives which can be processed at
either server. We ask how to best deal with this new stream:
redundancy, splitting, or dispatching to the shortest queue?

We then turn to the M model (Figure 2(c)), where there is
a “shared server,” which can be used by all request streams.
We ask how best to use this shared resource.

After exploring these questions for small systems, we turn
to issues of scale, investigating scaled versions of the N, W,
and M models. We use our exact closed form limiting dis-
tribution to derive the response time distribution for a fully
redundant class in any size system.

The remainder of this paper is organized as follows. In
Section 2, we describe related work and how it differs from
the present work. In Section 3, we formalize our model
and state our main theorem for the general system. In Sec-
tions 4, 5, and 6, we discuss detailed results for the N, M, and
W models. Section 7 addresses how these models scale as
the number of servers increases. In Section 8, we conclude.

2. PRIOR WORK
In this section, we review several models that are related

to redundant requests. All of these models differ from ours in
critical ways that change both the mathematical techniques
available to analyze the system, and the results obtained.
Nonetheless, we hope that the results in this paper might
shed some light on the problems below, many of which are
notoriously difficult.

Coupled Processor/Cycle Stealing
In a coupled processor system, there are two servers and two
classes of jobs, A and B. Server 1 works on class A jobs in
FCFS order, and server 2 works on class B jobs in FCFS
order. However, if there are only jobs of one class in the
system, the servers “couple” to serve that class at a faster
rate: unlike in the redundancy model, class A jobs only get
to use server 2 when the system is empty of B’s (and vice-
versa). Generating functions for the stationary distribution
of the queue lengths in a two-server system with Exponen-
tial service times were derived in [12, 23], but this required
solving complicated boundary value problems and provided
little intuition for the performance of the systems. The sta-
tionary distribution of the workload in the two-server sys-
tem was derived in [10] using a similar approach. In [17], a
power-series approach was used to numerically compute the
queue-length stationary distribution in systems with more
than two servers under Exponential service times. Much of
the remaining work on coupled processor models involves
deriving bounds and asymptotic results (for example, [6]).

In the donor-beneficiary model (one-way cycle stealing),
only one class of jobs (the beneficiary) receives access to
both servers, typically only when no jobs of the other class
are present. In addition, if there is only one beneficiary job
present, one server must idle (the servers do not “couple”).
The donor-beneficiary model has been studied, in approxi-
mation, in a variety of settings [16, 26]. However, it differs
from the redundancy model because a job is never in service
at more than one server, and because donor jobs often have
full preemptive priority at their server.

Fork-Join
Another related model is the fork-join system, in which each
job that enters a system with k servers splits into k pieces,
one of which goes to each server. The job is considered
complete only when all k pieces have completed service. This
is different from the redundancy model because only one
redundant request needs to finish service in the redundancy



(a) N model (b) W model (c) M model

Figure 2: (a) The N model. Class A jobs join the queue at server 2 only, while class R jobs are redundant at
both servers. (b) The W model. Class A jobs join the queue at server 1 only, class B jobs join the queue at
server 2 only, and class R jobs are redundant at both servers. (c) The M model. Class R1 jobs are redundant
at servers 1 and 2, and class R2 jobs are redundant at servers 2 and 3.

model. Furthermore, a fork-join job sends work to all k
servers, whereas a redundant job of class Ci only sends copies
to the servers in SCi , where SCi is a subset of the k servers.
The fork-join model is known to be very difficult to analyze.
Many papers have derived bounds and approximations for
such a system (for example, [3, 4, 22, 25, 35]). Exact analysis
remains an open problem except for the two-server case [13,
14]; see [8] for a more detailed overview.

Flexible Server Systems
A third related model is the flexible server system, in which
each class of jobs has its own queue, and each server can
serve some subset of classes. The design and performance
of flexible server systems has been studied in [5, 29, 30, 31].
In a flexible server system, traditionally, when a server be-
comes available, it chooses the queue from which to take
its next job according to some policy. By contrast in re-
dundancy systems, each server has its own FCFS queue and
jobs are routed to a subset of servers upon arrival. The key
difference between flexible server systems and redundancy
systems is that redundant jobs may be served by multiple
servers simultaneously, whereas in a flexible server system,
each job may be processed by only one server.

A special case of the flexible server system uses the follow-
ing policy. When a server becomes available, it chooses the
job that arrived earliest from among the jobs it can serve.
This policy is similar to the redundant system because each
server works in FCFS order among the jobs it can serve.
However, there are no redundant jobs in this flexible server
system; jobs cannot be in service at two servers at once.
For this model, under a specific routing assumption when
an arriving job sees multiple idle servers, the stationary dis-
tribution that satisfies the balance equations is given [32, 1].
Our redundancy model requires no such routing assump-
tion, because arriving redundant jobs enter service at all
idle servers. Finally, mean response times are lower in a re-
dundant system than in an FCFS flexible server system; our
exact analysis allows us to quantify this performance gap.

Redundancy Models
Recently, in 2012, the (n, k, r) system was proposed [27],
where there are n servers, and each job sends a request to
k ≤ n of these servers. When r ≤ k requests complete, the
job is considered finished. If we view the k requests as k “re-
dundant” copies of a job, the problem can be seen as similar
to ours, although in our model, jobs can only be redundant

at specific subsets of servers. Various bounds and approxi-
mations have been derived for the (n, k, r) model [19, 20, 27],
and the optimal value of k has been determined for different
system loads and costs of deleting extra redundant requests
[28]. Additionally, other variants have been proposed where
a job might wait before issuing redundant requests [34]. Un-
fortunately, the only exact analysis of the (n, k, r) system is
for a highly simplified model in which each server is actually
an M/M/∞ queue, so there is no queueing [19].

In the special case r = 1, which mostly closely matches our
model, approximations have been found assuming that the
queues are independent [33]. The optimal degree of replica-
tion and service discipline also has been studied [24].

3. MODEL
We consider a system with k servers, denoted 1, 2, . . . , k,

and ` classes of jobs, denoted C1, C2, . . . , C`. (see Figure 1).
The service time at server j is distributed Exponentially
with rate µj for all 1 ≤ j ≤ k, and each server processes
the jobs in its queue in FCFS order. Each class of jobs Ci
arrives to the system as a Poisson process with rate λCi , and
replicates itself by joining the queue at some fixed subset of
the servers SCi = {j | server j can serve class Ci}. Jobs in
class Ci cannot join the queue at any server j /∈ SCi . A job
may be in service at multiple servers at the same time; if a
job is in service at both servers i and j, it receives service
at combined rate µi + µj .

Looking at Figure 1, it is difficult to figure out an appro-
priate state space. One might think that you could track
the number of jobs of class at each queue, but this state
space is missing information about which specific jobs are in
multiple queues. Furthermore, servers are not independent,
and job classes are not independent, so typical product-form
type state spaces and solutions are unlikely to work.

The key insight that allows us to model this system is that
we can view the system as having a single central queue
in which all jobs wait in the order that they arrived (see
Figure 3). Each server processes jobs from this central queue
in FCFS order, skipping over those jobs it cannot serve. For
example, in Figure 3, server 3 will skip over job A(1) and
move to job B(1) when choosing its next job. We can write
the state of the system as (cn, cn−1, . . . , c1), where there
are n jobs in the system, and ci is the class of the ith job in
this central queue; c1 is the class of the job at the head of
the queue, which is also in service at all servers in SC1 .



Theorem 1. The limiting probability of being in state
(cn, cn−1, . . . , c1) is

π(cn,...,c1) = C

n∏
i=1

λci∑
m∈

⋃
j≤i

Scj

µm
,

where C is a normalizing constant.

Proof. See Appendix.

Although π(cn, cn−1,..., c1) looks like a product-form solu-
tion, it is not; we cannot write the limiting probabilities as
a product of independent marginal per-server terms, or as
a product of independent marginal per-class terms. In fact,
the form is quite unusual, as illustrated in Example 1.

Example 1. Consider the system shown in Figure 3. Here,
the current state is (B, B, A), where the head of the queue

is at the right, job A(1) is currently in service at servers 1
and 2, and job B(1) is currently in service at server 3. From
Theorem 1, the limiting probability of this state is

π(B,B,A) = C
λA

µ1 + µ2

(
λB

µ1 + µ2 + µ3

)2

.

Corollary 1. The general system with redundant requests
is stable when ∀ C ⊆ {C1, . . . , C`},∑

C∈C

λC <
∑

m∈
⋃
C∈C

SC

µm. (1)

Proof. All limiting probabilities π(cn,..., c1) from Theo-
rem 1 are in (0, 1) when ∀ C ⊆ {C1, . . . , C`}, (1) holds.

In Sections 4, 5, and 6, we use the result of Theorem 1 to
study the N, W, and M models, defined below.

N Model
The N model is the simplest non-trivial example of a re-
dundancy system where there are both redundant and non-
redundant classes. In an N model there are two servers run-
ning at rates µ1 and µ2 and two classes of jobs (see Fig-
ure 2(a)). Class A jobs are non-redundant; they arrive with
rate λA and join the queue at server 2 only (SA = {2}).
Class R jobs are redundant; they arrive with rate λR and
join the queue at both servers (SR = {1, 2}).

W Model
Consider a two-server, two-class system in which each class
of jobs has its own dedicated server (no redundancy). Now
suppose that a third class of jobs enters the system and
chooses to be redundant at both servers. The W model
helps us understand how the presence of this redundant class
affects the existing non-redundant classes. In a W model,
there are two servers running at rates µ1 and µ2 and three
classes of jobs (see Figure 2(b)). Class A jobs arrive with
rate λA and are served at server 1 only (SA = {1}), class
B jobs arrive with rate λB and are served at server 2 only
(SB = {2}), and class R jobs arrive with rate λR and may
be served at both servers (SR = {1, 2}).

M Model
Again consider the two-server, two-class system in which
each class of jobs has its own dedicated server. Suppose

Figure 3: Let A and B be two job classes, where
A(i) is the ith arrival of class A. We can view the
general redundancy system (left) as having a sin-
gle central queue from which each server works in
FCFS order, skipping over those jobs it cannot serve
(right). The central queue is an interleaving of the
individual servers’ queues, where each job appears
only once, and appears in the order it arrived

that a new server is added to the system and all jobs issue
redundant requests at this server. The M model helps us
understand how best to use the new server. In an M model,
there are three servers with rates µ1, µ2, and µ3 and two job
classes (see Figure 2(c)). Class R1 jobs arrive with rate λR1

and join the queue at servers 1 and 2 (SR1 = {1, 2}), and
class R2 jobs arrive with rate λR2 and have SR2 = {2, 3}).

4. N MODEL
We first turn our attention to the N model (Figure 2(a)).

An immediate consequence of Theorem 1 is Lemma 1, which
gives the limiting distribution of the N model.

Lemma 1. In the N model, the limiting probability of be-
ing in state (cn, cn−1, . . . , c1) is:

π(cn,...,c1) = CN

(
λA
µ2

)a0 ( λR
µ1 + µ2

)r (
λA

µ1 + µ2

)a1
,

where a0 is the number of class A jobs before the first class
R job, a1 is the number of class A jobs after the first class R
job, r is the total number of class R jobs in the queue, and

CN = (µ2−λA)(µ1+µ2−λA−λR)
µ2(µ1+µ2−λA)

is a normalizing constant.

We use this result to find (Theorem 2) that for the re-
dundant class (class R), response time is Exponentially dis-
tributed, which is pleasantly surprising because the system
is not an M/M/1. Specifically, the distribution of response
time is the same as that in an M/M/1, where the arrival
rate is λR and the service rate is µ′ = µ1 + µ2 − λA. Note
that µ′ can be viewed as giving the R jobs the full µ1, and
the portion of µ2 that is not appropriated for the class A
jobs (µ2−λA). Equivalently, this is the response time in an
M/M/1 with arrival rate λA +λR and service rate µ1 +µ2.1

Theorem 2. In the N model,

1. The number of class R jobs in the system, NR, is dis-
tributed Geometric(1− ρ)− 1, where ρ = λR

µ1+µ2−λA
.

1This is counterintuitive because as we will see in Lemma 3,
the distribution of response time for class R does not depend
on whether class A is redundant or non-redundant.



2. The response time of class R jobs, TR, is distributed
Exp(µ1 + µ2 − λA − λR).

Proof. This is a special case of the more general result
in Theorem 10, which is proved in Appendix B.

In Theorem 3, we find that the response time for the non-
redundant class, TA, follows a Generalized Hyperexponential
distribution2. We can view the mean response time of class
A jobs as that of an M/M/1 with arrival rate λA and service
rate µ2, plus a penalty term that captures the extent to
which the redundant jobs hurt the A’s (Equation 3).

Theorem 3. In the N model,

1. The number of class A jobs in the system, NA, has p.m.f.

Pr{NA = nA} = ζN1

(
λA

µ2

)nA
+ ζN2

(
λA

µ1 + µ2 − λR

)nA
(2)

where

ζN1 = CN

(
µ1

µ1 − λR

)
,

ζN2 = CN

(
λR

µ1 + µ2 − λR
− λR
µ1 − λR

)
,

and CN is as in Lemma 1.

2. The distribution of response time of class A jobs is

TA ∼ H2(νN1, νN2, ωN),

where

νN1 = µ2 − λA
νN2 = µ1 + µ2 − λA − λR
νN3 = µ1 + µ2 − λA

ωN =
λRνN1

(µ1 − λR)νN3
.

The expected response time of class A jobs is

E[TA] =
1

νN1︸︷︷︸
M/M/1

+
1

νN2
− 1

νN3︸ ︷︷ ︸
penalty

. (3)

Proof. Deferred to the end of the section.

Figure 4 compares mean response time before class R
jobs become redundant (each class sees its own independent
M/M/1), and after class R jobs become redundant. We hold
µ1 = µ2 = 1 and vary the load by increasing λR = λA. We
find redundancy helps class R jobs by a factor of two (Fig-
ure 4(a)), but can hurt class A by up to 50% (Figure 4(b)).

In Lemma 3, we ask what happens if class A jobs decide
they too should be redundant. That is, all jobs can be served
at both servers - the system is fully redundant. This trans-
forms the system into an M/M/1 with arrival rate λA + λR
and service rate µ1 +µ2 (Lemma 2). Surprisingly, class R is
immune to pain when class A also becomes redundant: as
Lemma 3 shows, the distribution of response time for class
R is the same before and after class A becomes redundant.
Of course, when the A’s become redundant, they receive the
benefit of having two servers.
2A Generalized Hyperexponential, H2(ν1, ν2, ω) is defined
as the weighted mixture of two Exponentials with rates ν1
and ν2, where the first Exponential is given weight 1+ω and
the second is given weight −ω. Note that ω can be any real
number; it need not be a probability [7].
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Figure 4: Comparing mean response time before and
after class R becomes redundant when µ1 = µ2 = 1
and λA= λR for (a) class R, and (b) class A. The
mean response time for the overall system is the
weighted average of these two classes.

Lemma 2. The fully redundant system, in which all jobs
issue redundant requests at both servers, is equivalent to an
M/M/1 with arrival rate λA + λR and service rate µ1 + µ2.

Proof. Deferred to the end of the section.

Lemma 3. With respect to response time, both classes of
jobs do at least as well in the fully redundant model as in the
N model. In particular,

1. E[TA]Fully Redundant ≤ E[TA]Redundant

2. TFully Redundant
R

d
= TRedundant

R .

Proof. Deferred to the end of the section.

Going back to the N model with only one redundant class,
redundancy clearly helps the redundant class considerably.
But there are alternative latency-reducing strategies. For
example, each redundant class could optimally probabilisti-
cally split jobs among all allowable servers (Opt-Split), or
join the shortest queue among allowable servers (JSQ).

In Figure 5, we compare these other options for the N
model, where the mean response times under Opt-Split are
derived analytically (Definition 1), but JSQ is simulated. We
find that, for the redundant class R, redundancy beats JSQ,
which beats Opt-Split. Redundancy often is not much better
than JSQ, yet they can differ by a factor of 2, depending on
the load of class R and the relative server speeds.

Surprisingly, the non-redundant class A often prefers re-
dundancy of the other class to Opt-Split or JSQ. This is
because the non-redundant class wants the redundant class
to spend as little time as possible blocking the A jobs at
server 2, and redundancy helps with this.

Note that under Opt-Split we see an inflection point in
mean response time for both class R and class A. For ex-
ample, in Figures 5(a) and (b), there is an inflection point
at λR = 0.6, when λR = λA. This phase change occurs be-
cause when λR < λA, no class R jobs go to server 2 under
Opt-Split, but when λR > λA the R’s compete with the A’s.
Also observe that E[T ] is not monotonically increasing; this
is because as λR increases, the redundant class contributes
more to the weighted average.

From the overall system’s perspective, redundancy is al-
ways preferable to Opt-Split and JSQ because it optimizes
overall server utilization.

When µ1 = µ2, even when non-redundant jobs prefer Opt-
Split, redundancy is never more than 50% worse than Opt-
Split for the non-redundant jobs (Theorem 4).
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Figure 5: Comparing redundancy (solid blue), Opt-Split (dashed green), and JSQ (dashed red) for the N
model as λR increases with λA= 0.6. We plot mean response time for the redundant R class (left column),
the non-redundant A class (middle column), and the overall system (right column). Rows represent different
ratios of server speeds.

Definition 1. Under Opt-Split, p fraction of class R jobs
go to server 2, and 1 − p fraction go to server 1, where p
is chosen to minimize E[T ]. The mean response times for
class R jobs, class A jobs, and the system are respectively:

E[TR]Opt−Split =
1− p

µ1 − (1− p)λR
+

p

µ2 − λA − pλR

E[TA]Opt−Split =
1

µ2 − λA − pλR

E[T ]Opt−Split =
λA

λA + λR
E[TA]Opt−Split

+
λR

λA + λR
E[TR]Opt−Split.

Theorem 4. If µ1 = µ2, then the following are true:

1. 1
2
≤ E[TR]Redundant

E[TR]Opt−Split ≤ 1.

If λR > λA, then E[TR]Redundant

E[TR]Opt−Split = 1
2

.

2. E[TA]Redundant

E[TA]Opt−Split ≤ 3
2

.

3. 1
2
≤ E[T ]Redundant

E[T ]Opt−Split ≤ 1.

Proof. Deferred to the end of the section.

4.1 Proofs for N Model
Proof. [Theorem 3] We first consider the case nA = 0.

Pr{NA = 0} = C

∞∑
i=0

(
λR

µ1 + µ2

)i
= C

µ1 + µ2

µ1 + µ2 − λR
.

For nA > 0, we compute Pr{NA = nA} by summing over all
values of r, and all values of a0 and a1 so that a0 +a1 = nA:

Pr{NA = nA} = CβnAA +

nA∑
a0=0

∞∑
r=1

Cβa0A αrRα
nA−a0
A

(
nA − a0 + r − 1

nA − a0

)
,

where βA = λA
µ2

, αA = λA
µ1+µ2

, and αR = λR
µ1+µ2

, which after

some simplification yields the result in (2). We omit the
details due to space considerations; for the full proof, see
the associated technical report [15].

We now obtain the Laplace transform of the response time

for class A jobs, T̃A(s), via distributional Little’s Law [21].
First, we find the z-transform of the number of class A jobs

in the system, N̂A(z):

N̂A(z) =
∞∑
i=0

Pr{NA = i}zi



= ζN1

∞∑
i=0

(
λA
µ2

)i
zi + ζN2

∞∑
i=0

(
λA

µ1 + µ2 − λR

)i
zi

=
ζN1µ2

µ2 − λAz
+

ζN2(µ1 + µ2 − λR)

µ1 + µ2 − λR − λAz
.

Observe that class A jobs depart the system in the same
order in which they arrive, so ATA , the number of class A
arrivals during a class A response time, is equivalent to NA,
the number of class A jobs seen by an A departure. Then

since ÂTA(z) = T̃A(λA − λAz), we have:

T̃A(λA − λAz) = N̂A(z)

=
ζN1µ2

µ2 − λAz
+

ζN2(µ1 + µ2 − λR)

µ1 + µ2 − λR − λAz
.

Let s = λA − λAz, so z = 1− s
λA

. Then we have

T̃A(s) =
ζN1µ2

µ2 − λA(1− s
λA

)
+

ζN2(µ1 + µ2 − λR)

µ1 + µ2 − λR − λA(1− s
λA

)

= (1 + ωN)
νN1

νN1 + s
− ωN

νN2
νN2 + s

.

This is the transform of a Generalized Hyperexponential dis-
tribution, H2(νN1, νN2, ωN). Finally,

E[TA] = −T̃ ′A(s)|s=0

= −
[
(1 + ωN)

−νN1
(νN1 + s)2

+ ωN
νN2

(νN2 + s)2

] ∣∣∣∣
s=0

=
1

νN1
+

1

νN2
− 1

νN3
.

Proof. [Lemma 2] In the fully redundant model, all
jobs enter the FCFS queue at both servers and depart from
both servers immediately upon completion at either server.
This is exactly an M/M/1 with arrival rate λA + λB and
service rate µ1 + µ2.

Proof. [Lemma 3] From Theorem 2, in the N model,
TR ∼ Exp(µ1 + µ2 − λA − λB), which is the response time
distribution in an M/M/1 with arrival rate λA + λR and
service rate µ2 + µ2. From Theorem 3, in the N model,

E[TA] =
1

µ1 + µ2 − λA − λR
+

1

µ2 − λA
− 1

µ1 + µ2 − λA
,

which is at least the mean response time in an M/M/1 with
arrival rate λA +λR and service rate µ1 +µ2 since 1

µ2−λA
−

1
µ1+µ2−λA

is nonnegative.

Proof. [Theorem 4] Definition 1 gives us E[TR]Opt−Split,
E[TA]Opt−Split, and E[T ]Opt−Split. We know E[TA]Redundant

from Theorem 3. Theorem 2 tells us that

TRedundant
R ∼ Exp(µ1 + µ2 − λA − λR),

so we know that E[TR]Redundant = 1
µ1+µ2−λA−λR

. Finally,

E[T ]Redundant =
λR

λA + λR
E[TR]Redundant

+
λA

λA + λR
E[TA]Redundant.

Thus, E[TR]Redundant

E[TR]Opt−Split , E[TA]Redundant

E[TA]Opt−Split , and E[T ]Redundant

E[T ]Opt−Split , and

the desired results follow after some minor algebra.

5. W MODEL
We now consider the W model (see Figure 2(b)). The W

model has two non-redundant classes, A and B, each with
its own server. A third class, R, enters the system and
issues redundant requests at both servers. We study how
this redundant class affects the performance of the system.

An immediate consequence of Theorem 1 is Lemma 4,
which gives the limiting distribution of the W model.

Lemma 4. In the W model, the limiting probability of be-
ing in state (cn, cn−1, . . . , c1) depends on c1, as follows:

π(cn,...,A) = CW

(
λA
µ1

)a0 ( λA
µ1 + µ2

)a1 ( λB
µ1 + µ2

)b1 ( λR
µ1 + µ2

)r
π(cn,...,B) = CW

(
λB
µ2

)b0 ( λA
µ1 + µ2

)a1 ( λB
µ1 + µ2

)b1 ( λR
µ1 + µ2

)r
π(cn,...,R) = CW

(
λA

µ1 + µ2

)a1 ( λB
µ1 + µ2

)b1 ( λR
µ1 + µ2

)r
,

where a0 is the number of class A jobs before the first class
B or R job, b0 is the number of class B jobs before the first
class A or R job, a1 (respectively, b1) is the number of class
A (class B) jobs after the first job of class R or B (A), r is
the total number of class R jobs, and

CW =
(µ1 − λA)(µ2 − λB)(µ1 + µ2 − λA − λB − λR)

µ1µ2(µ1 + µ2 − λA − λB)

is a normalizing constant.

Like in the N model, the redundant class (class R) has an
Exponentially distributed response time (Theorem 5). This
is again surprising because the system is not an M/M/1.
Nonetheless, the response time for the redundant class is
stochastically equivalent to the response time in an M/M/1
with arrival rate λR and service rate µ′ = µ1 + µ2 − λA −
λB . We can interpret µ′ as the remaining service capacity
in the system after λA and λB have been apportioned to
classes A and B respectively. Alternatively, we can view the
response time for the redundant class as that in an M/M/1
with arrival rate λA + λB + λR and service rate µ1 + µ2.

Theorem 5. In the W model,

1. The number of class R jobs in the system, NR, is dis-
tributed Geometric(1−ρ)−1, where ρ = λR

µ1+µ2−λA−λB
.

2. The response time of class R jobs, TR, is distributed
Exp(µ1 + µ2 − λA − λB − λR).

Proof. The proof follows the same approach as that of
Theorem 10, and is omitted.

In Theorem 6, we derive the distribution of response time
for the non-redundant class A (class B is symmetric). Again
like in the N model, we find that TA follows a Generalized
Hyperexponential distribution. In addition, the mean re-
sponse time of class A (or class B) jobs can be interpreted
as that in an M/M/1 with arrival rate λA and service rate
µ1, plus a penalty term that captures the extent to which
the redundant class hurts the A’s (or B’s) (Equation 4).
Surprisingly, this penalty is the same for class A and class
B even if they have different loads: the pain caused by the
redundant class is shared equally among the non-redundant
classes.

Theorem 6. In the W model,
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Figure 6: Comparing redundancy (solid blue), Opt-Split (dashed green), and JSQ (dashed red) for the W
model as λR increases, for µ1 = µ2 = 1, λA= 0.6, and λB= 0.4. Lines shown include mean response time for (a)
class R, (b) class A, and (c) the system. Results for other values of µ1 and µ2 are similar.

1. The number of class A jobs in the system, NA, has
p.m.f.

Pr{NA = nA} = ζW1

(
λA
µ1

)nA
+ζW2

(
λA

µ1 + µ2 − λB − λR

)nA
,

where

ζW1 =
(µ1 − λA)(µ2 − λB)(µ1 + µ2 − λA − λB − λR)

µ1(µ2 − λB − λR)(µ1 + µ2 − λA − λB)

ζW2 =
−λR(µ1 − λA)(µ1 + µ2 − λA − λB − λR)

(µ2 − λB − λR)(µ1 + µ2 − λA − λB)
.

2. The distribution of response time of class A jobs is

TA ∼ H2(νW1, νW2, ωW),

where

νW1 = µ1 − λA
νW2 = µ1 + µ2 − λA − λB − λR

ωW =
(µ2 − λB)νW2

(µ2 − λB − λR)νW3
.

The mean response time of class A jobs is

E[TA] =
1

νW1︸︷︷︸
M/M/1

+
1

νW2
− 1

νW3︸ ︷︷ ︸
penalty

, (4)

where

νW3 = µ1 + µ2 − λA − λB .

Proof. The proof follows the same approach as that of
Theorem 3, and is omitted.

The introduction of a new redundant class clearly hurts
the existing non-redundant classes, because the new redun-
dant jobs compete for service with the non-redundant jobs.
We now ask what would happen if class R chose which
queue(s) to join according to some alternative policy, for
example, Opt-Split or JSQ.

In Figure 6, we compare these options, where the mean
response time under Opt-Split is derived analytically (Def-
inition 2), but JSQ is simulated. We find that for the re-
dundant class, redundancy outperforms JSQ, which in turn
outperforms Opt-Split (Figure 6(a)).

For the non-redundant classes (Figure 6(b)), mean re-
sponse time is often lower under redundancy than under

Opt-Split or JSQ, particularly under higher loads of redun-
dant jobs. This is because even though a larger number of R
jobs compete with class A at server 1, some of these R jobs
depart the system without ever using server 1 (they complete
service at server 2 before entering service at server 1), and
some of these R jobs receive service on both servers at once,
thus departing the system faster. As in the N model, redun-
dancy is always better for the overall system (Figure 6(c)).

When the servers are homogeneous, in the few cases in
which mean response time of class A or B is lower under
Opt-Split than under redundancy, we show that redundancy
is never more than 50% worse for the A or B jobs.

Definition 2. Under Opt-Split, p fraction of class R jobs
go to server 1, and 1 − p fraction go to server 2, where p
is chosen to minimize E[T ]. The mean response times for
class R jobs, class A jobs, and the overall system are:

E[TR]Opt−Split =
p

µ1 − λA − pλR
+

1− p
µ2 − λB − (1− p)λR

E[TA]Opt−Split =
1

µ1 − λA − pλR

E[T ]Opt−Split =
λA

λA + λB + λR
E[TA]Opt−Split

+
λB

λA + λB + λR
E[TB ]Opt−Split

+
λR

λA + λB + λR
E[TR]Opt−Split.

The mean response time for class B is symmetric to that of
class A.

Theorem 7. If µ1 = µ2, then the following are true:

1. 1
2
≤ E[TR]Redundant

E[TR]Opt−Split ≤ 1.

If λR ≥ |λA − λB |, then E[TR]Redundant

E[TR]Opt−Split = 1
2

.

2. 1
2
≤ E[TA]Redundant

E[TA]Opt−Split ≤ 3
2

.

3. 1
2
≤ E[T ]Redundant

E[T ]Opt−Split ≤ 1.

Proof. We have E[TR]Opt−Split, E[TA]Opt−Split, and
E[T ]Opt−Split from Definition 2. We also know E[TA]Redundant

from Theorem 6. Theorem 5 tells us that

TRedundant
R ∼ Exp(µ1 + µ2 − λA − λB − λR),



so

E[TR]Redundant =
1

µ1 + µ2 − λA − λB − λR
.

Finally,

E[T ]Redundant =
λR

λA + λB + λR
E[TR]Redundant

+
λA

λA + λB + λR
E[TA]Redundant

+
λB

λA + λB + λR
E[TB ]Redundant.

We use these expressions to find E[TR]Redundant

E[TR]Opt−Split , E[TA]Redundant

E[TA]Opt−Split ,

and E[T ]Redundant

E[T ]Opt−Split , and the desired results follow after some

minor algebra.

6. M MODEL
Finally, we consider the M model (Figure 2(c)). Unlike

the N and W models, there are two redundant classes in
an M model, classes R1 and R2. We study how to best
use a shared server to which both classes issue redundant
requests. For convenience, throughout the remainder of this
section we use the notation

µ1,2,3 = µ1 + µ2 + µ3

µ1,2 = µ1 + µ2

µ2,3 = µ2 + µ3.

An immediate consequence of Theorem 1 is Lemma 5,
which gives the limiting distribution of the M model.

Lemma 5. In the M model, the limiting probability of be-
ing in state (cn, cn−1, . . . , c1) depends on c1, as follows:

π(cn,...,R1) = CM

(
λR1

µ1,2

)r1,0 ( λR1

µ1,2,3

)r1,1 ( λR2

µ1,2,3

)r2,1
π(cn,...,R2) = CM

(
λR2

µ2,3

)r2,0 ( λR1

µ1,2,3

)r1,1 ( λR2

µ1,2,3

)r2,1
where r1,0 (respectively, r2,0) is the number of class R1 (R2)
jobs before the first class R2 (R1) job, r1,1 (respectively, r2,1)
is the number of class R1 (R2) jobs after the first R2 (R1)
job, and

CM =
(µ1,2 − λR1)(µ1,2,3 − λR1 − λR2)(µ2,3 − λR2)

µ1,2µ2,3(µ1,2,3 − λR1 − λR2) + λR1λR2µ2

is a normalizing constant.

In Theorem 8, we derive the distribution of response time
for class R1 (class R2 is symmetric). The response time for
class R1 follows a Generalized Hyperexponential distribu-
tion.

Note that in the N and W models, the redundant class had
Exponentially distributed response time and the response
time distribution for non-redundant classes was a Gener-
alized Hyperexponential, whereas in the M model, the re-
dundant class has a Generalized Hyperexponential response
time distribution. We hypothesize that the response time
distribution is related to the degree of redundancy: fully re-
dundant classes see Exponentially distributed response time,
and partially redundant or non-redundant classes see Gen-
eralized Hyperexponentially distributed response times.

Theorem 8. In the M model,

1. The number of class R1 jobs, NR1 has p.m.f.

Pr{NR1 = n} = ζM1

(
λR1

µ1,2

)n
+ ζM2

(
λR1

µ1,2,3 − λR2

)n
,

where

ζM1 = CM
µ3

µ3 − λR2

ζM2 = CM

(
λR2

µ2,3 − λR2

− λR1

µ1,2,3 − λR2

)
.

2. The distribution of response time of class R1 jobs is

TR1 ∼ H2(νM1, νM2, ωM),

where

νM1 = µ1,2 − λR1

νM2 = µ1,2,3 − λR1 − λR2

ωM = ζM1
µ1,2

µ1,2 − λR1

Proof. The proof follows the same approach as that of
Theorem 3, and is omitted.

Both classes obviously benefit from issuing redundant re-
quests on a shared server rather than each class having a sin-
gle dedicated server. However, one might wonder whether
mean response time could be further reduced by using some
other policy, like Opt-Split or JSQ, instead of redundancy.
In Figure 7 we investigate the relative performance of these
alternative policies. Mean response time under Opt-Split is
derived analytically (Definition 3); JSQ is simulated.

Definition 3. Under Opt-Split, p fraction of class R1

jobs go to server 2, and 1− p fraction go to server 1, and q
fraction of class R2 jobs go to server 2, and 1 − q fraction
go to server 3. We choose p and q to minimize the overall
mean response time, given by

E[T ]Opt−Split =
(1− p)λR1

λR1 + λR2

· 1

µ1 − (1− p)λR1

+
pλR1 + qλR2

λR1 + λR2

· 1

µ2 − pλR1 − qλR2

+
(1− q)λR2

λR1 + λR2

· 1

µ3 − (1− q)λR2

.

In all cases, redundancy outperforms both Opt-Split and
JSQ. For homogeneous servers (Figure 7(a)), mean response
time under JSQ approaches that under redundancy at high
load, but at low load, redundancy is better by a factor of 2.
For heterogeneous servers (Figure 7(b)), as the service rate
of the shared server increases, mean response time under
Opt-Split approaches that under redundancy (Theorem 9),
but JSQ is worse by a factor of 2. As the system is sym-
metric, the response times of the individual classes are the
same as that of the overall system, and thus are not shown.

We analytically prove performance bounds for the M model:

Theorem 9. In the M model, for any µ1, µ2, µ3, λR1 ,
and λR2 such that the system is stable,

1. If µ1 = µ2 = µ3 and λR1 = λR2 , 1
3
≤ E[T ]Redundant

E[T ]Opt−Split ≤ 1
2

.
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(b) µ1 = µ3 = 1, λR1 = λR2 = 0.6.

Figure 7: Comparing redundancy, Opt-Split, and
JSQ for the M model. Lines shown include mean
response time for the overall system under redun-
dancy (solid blue), Opt-Split (dashed green), and
JSQ with tiebreaking in favor of the faster server
(dashed red). Mean response time as a function of
(a) increasing λR1 = λR2 , (b) increasing µ2.

2. limµ2→∞
E[T ]Redundant

E[T ]Opt−Split = 1.

3. E[T ]Redundant

E[T ]Opt−Split ≤ 1.

Proof. We know E[T ]Opt−Split from Definition 3, and

E[T ]Redundant =
λR1

λR1 + λR2

E[TR1 ]Redundant

+
λR2

λR1 + λR2

E[TR2 ]Redundant,

where we know E[TR1 ]Redundant and E[TR2 ]Redundant from

Theorem 8. We can then write E[T ]Redundant

E[T ]Opt−Split , and the desired

results follow after some minor algebra.

7. SCALE
Thus far, we only have considered systems with two servers

(the N and W models) and three servers (the M model). We
now turn our attention to the question of scale.

The scaled N, W, and M models are shown in Figure 8.
In the scaled N model, there are k servers and k classes of
jobs (see Figure 8(a)). Class R jobs replicate at all servers,
while jobs from class Ci join only the queue at server i for
2 ≤ i ≤ k. The scaled W model is similar; there are k
servers and k + 1 classes of jobs, with class R replicating at
all servers, and class Ci going only to server i, 1 ≤ i ≤ k
(see Figure 8(b)). In the scaled M model, each class Ri,
1 ≤ i < k, joins the queue at its own dedicated server and
at a single server shared by all classes (see Figure 8(c)).

(a) Scaled N model

(b) Scaled W model

(c) Scaled M model

Figure 8: Scaled versions of (a) the N model, (b) the
W model, and (c) the M model.

The limiting probabilities derived in Theorem 1 for the
general redundancy system apply to the scaled N, W, and
M models. In Theorem 10, we use this result to find that in
both the scaled N and W models, response time for class R
is Exponentially distributed, extending the results of Theo-
rem 2 and Theorem 5 respectively.

Theorem 10.

1. In the scaled N model, the distribution of the number
of class R jobs in the system is

NR ∼ Geometric

(
1− λR∑k

i=1 µi −
∑k
i=2 λi

)
− 1,

and the distribution of the response time of class R
jobs is

TR ∼ Exp

(
k∑
i=1

µi −
k∑
i=2

λi − λR

)
.

2. In the scaled W model, the distribution of the number
of class R jobs in the system is

NR ∼ Geometric

(
1− λR∑k

i=1 µi −
∑k
i=1 λi

)
− 1,
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Figure 9: Comparing E[TR] under redundancy (solid blue), Opt-Split (dashed green), and JSQ (dashed red)
in scaled systems with homogeneous servers, all with rate 1. (a) The scaled N model with λCi= 0.6 for all
non-redundant classes, and λR= 1.2. (b) The scaled W model with λCi= 0.6 for all non-redundant classes, and
λR= 0.7. (c) The scaled M model with λRi= 0.6 for all classes.

and the distribution of the response time of class R
jobs is

TR ∼ Exp

(
k∑
i=1

µi −
k∑
i=1

λi − λR

)
.

Proof. See Appendix.

For the M model and for the non-redundant classes in the
N and W models, the result from Theorem 1 does not easily
yield a closed form expression in the scaled models. The
results discussed in the remainder of this section for these
classes are obtained via simulation.

For the two-server N and W models, we saw that the re-
dundant class had lower mean response time under redun-
dancy than under both JSQ and Opt-Split, but often JSQ
was very close to redundancy. Here, for scaled models, we
investigate whether redundancy enjoys a greater advantage
over JSQ and Opt-Split as the number of servers increases.

Indeed, we find that the redundant class sees a much
greater benefit under redundancy than under Opt-Split and
JSQ as k increases for the scaled N and W models (see Fig-
ures 9(a) and (b)). In fact, as k increases, the benefit grows
unboundedly because when a class R job enters a system
with high k, it tends to see many idle servers. Under Opt-
Split, this job may not be routed to one of the the idle
servers. Under JSQ, the job goes to a single idle server i
and receives mean response time 1

µi
. Under redundancy,

the job gets to use all of the idle servers, thereby receiving
mean response time 1∑

i µi
.

In the two-server N and W models, we saw that the benefit
that class R received from redundancy came at a cost to the
non-redundant class A. In the scaled N and W models, this
cost approaches 0 because the pain caused by the redundant
class is spread among all non-redundant classes, so the effect
on any one of these classes is minimal; the response time for
each non-redundant class Ci approaches that of an M/M/1
with arrival rate λCi and service rate µi.

In the three-server version of the M model (Section 6), we
saw that redundancy significantly outperformed Opt-Split
and JSQ. In Figure 9(c), we look at the relative performance
of the three policies as k increases. In the scaled M model, at
low k, redundancy indeed gives a lower mean response time
than Opt-Split and JSQ. However, as k increases, response
time becomes the same under all three policies. As the load

on the shared server becomes high, no class benefits from
this server; each class experiences an independent M/M/1.
Convergence to k independent M/M/1 queues is slow; for
example, at k = 200, redundancy still provides a 5% lower
mean response time than independent M/M/1 queues.

8. CONCLUSION
In this paper we study a multi-server system with re-

dundant requests. In such a system, each job that arrives
joins the queue at some subset of the servers and departs
the system as soon as it completes service at one of these
servers. While recent empirical work in computer systems
has demonstrated that redundant requests can greatly re-
duce response time, theoretical analysis of systems with re-
dundancy has proved challenging.

We present the first exact analysis of systems with redun-
dancy, deriving the limiting distribution of the queue state.
Our state space is very complex and furthermore yields a
non-product form, and non-obvious, limiting distribution.
Nonetheless, we find very clean, simple results for response
time distributions for both redundant and non-redundant
classes in small systems. For large systems, we derive the
response time distribution of a fully redundant class. Many
of our results are counterintuitive:

1. The redundant class experiences a response time dis-
tribution identical to that in an M/M/1, even though
the system is not an M/M/1 (N and W models).

2. Once a class is fully redundant, it is immune to addi-
tional classes becoming redundant: the distribution of
its response time does not change (N and W model).

3. The non-redundant class often prefers the other class
to be redundant as opposed to routing the other class
according to Opt-Split or JSQ (N and W models).

4. Given two classes of jobs, A and B, each with its own
queue, if a class R is redundant at both queues, the
pain caused to class A is equal to that caused to class
B, even though A’s and B’s respective arrival rates
and service rates may be different (W model).

5. When multiple classes share a single server, redun-
dancy can improve mean response time relative to Opt-
Split and JSQ by a factor of 2 (M model).

6. As the number of servers increases, redundancy gives
an even greater benefit to the redundant class while



causing less pain to the non-redundant classes (scaled
N and scaled W models).

The redundancy system is closely related to many other
queueing models for which exact analysis has long been elu-
sive: Coupled processor systems, fork-join systems, and sys-
tems with flexible servers all bear a resemblance to redun-
dancy systems in that they all involve jobs that can be pro-
cessed by multiple servers. The specific mechanism that
determines which jobs run on which servers, and whether
jobs can run simultaneously on multiple servers, varies be-
tween models, but all of these models share the underlying
theme of flexibility. We hope that the new analysis pre-
sented in this paper will provide insights on how to analyze
these other difficult systems.
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APPENDIX
A. PROOF OF THEOREM 1

Theorem 1. The limiting probability of being in state
(cn, cn−1, . . . , c1) is

π(cn,...,c1) = C

n∏
i=1

λci∑
m∈

⋃
j≤i

Scj

µm
,

where C is a normalizing constant.

Proof. We begin by writing local balance equations for
our states. The local balance equations are:

A ≡ Rate entering state (cn, . . . , c1) due
to an arrival

=
Rate leaving state (cn, . . . , c1) due
to a departure

≡ A′

Bc ≡ Rate entering state (cn, . . . , c1) due
to a departure of class c

=
Rate leaving state (cn, . . . , c1) due
to an arrival of class c

≡ B′c.

For an empty system, the state is (). It is not possible to
enter state () due to an arrival or to leave due to a depar-
ture, so we only have one local balance equation of the form
Bc = B′c:

π()λc = π(c)

∑
m∈Sc

µm. (5)

For any other state (cn, cn−1, . . . , c1), we have local balance
equations of the form:

A = π(cn−1,...,c1)λcn = π(cn,...,c1)

∑
m∈

⋃
j≤n Scj

µm = A′ (6)

Bc =

n∑
i=0

∑
m∈Sc,
m/∈Scj ,
1≤j≤i

π(cn,...,ci+1,c,ci,...,c1)µm

= π(cn,...,c1)λc = B′c.

(7)

We guess the following form for π(cn,...,c1):

π(cn,...,c1) = C

n∏
i=1

λci∑
m∈

⋃
j≤i

Scj

µm
. (8)

We will prove inductively that our guess satisfies the bal-
ance equations. The base case is state (). Substituting the
guess from (8) into the left-hand side of (5), we get:

π(c)

∑
m∈Sc

µm = C
λc∑

m∈Sc
µm

∑
m∈Sc

µm

= Cλc

= π()λc,

which is exactly the right-hand side of (5).
Now, assume that (6) and (7) hold for some n − 1 ≥ 0.

We will show that both hold for n.
1. A = A′. From (6), we have:

A = π(cn−1,...,c1)λcn = C

n−1∏
i=1

λci∑
m∈

⋃
j≤i

Scj

µm
λcn

= π(cn,...,c1)

∑
m∈

⋃
j≤n

Scj
µm

λcn
λcn

= π(cn,...,c1)

∑
m∈

⋃
j≤n

Scj

µm = A′.

2. Bc = B′c. From (7), we have:

Bc =

n∑
i=0

∑
m∈Sc,
m/∈Scj ,
1≤j≤i

π(cn,...,ci+1,c,ci,...,c1)µm

=

n−1∑
i=0

∑
m∈Sc\

⋃
j≤i

Scj

π(cn,...,ci+1,c,ci,...,c1)µm

+
∑

m∈Sc\
⋃
j≤n

Scj

π(c,cn,...,c1)µm

=

n−1∑
i=0

∑
m∈Sc\

⋃
j≤i

Scj

λcnπ(cn−1,...,ci+1,c,ci,...,c1)∑
t∈

⋃
j≤n

Scj
⋃
Sc
µt

µm

+ C

λc
∑
m∈Sc\

⋃
j≤n

Scj
µm∑

m∈
⋃
j≤n

Scj
⋃
Sc
µm

n∏
i=1

λci∑
m∈

⋃
j≤i

Scj

µm

=
λcn∑

m∈
⋃
j≤n

Scj
⋃
Sc

µm

n−1∑
i=0

∑
m∈Sc\

⋃
j≤i

Scj

π(cn−1,...,ci+1,c,ci,...,c1)µm

+ λcπ(cn,...,c1)

∑
m∈Sc\

⋃
j≤n

Scj
µm∑

m∈
⋃
j≤n

Scj
⋃
Sc
µm

=
λcn∑

m∈
⋃
j≤n Scj

⋃
Sc
µm

π(cn−1,...,c1)λc



+ λcπ(cn,...,c1)

∑
m∈Sc\

⋃
j≤n Scj

µm∑
m∈

⋃
j≤n Scj

⋃
Sc
µm

=Cλc
λcn∑

m∈
⋃
j≤n Scj

⋃
Sc
µm

n−1∏
i=1

λci∑
m∈

⋃
j≤i Scj

µm

+ λcπ(cn,...,c1)

∑
m∈Sc\

⋃
j≤n Scj

µm∑
m∈

⋃
j≤n Scj

⋃
Sc
µm

=λcπ(cn,...,c1)

∑
m∈

⋃
j≤n Scj

µm∑
m∈

⋃
j≤n Scj

⋃
Sc
µm

+ λcπ(cn,...,c1)

∑
m∈Sc\

⋃
j≤n Scj

µm∑
m∈

⋃
j≤n Scj

⋃
Sc
µm

=λcπ(cn,...,c1) = B′c.

Hence the local balance equations hold for all n, and so the
guess for the limiting probabilities from (8) is correct.

B. PROOF OF THEOREM 10
Theorem 10.

1. In the scaled N model, the distribution of the number of
class R jobs in the system is

NR ∼ Geometric

(
1− λR∑k

i=1 µi −
∑k
i=2 λi

)
− 1,

and the distribution of the response time of class R jobs
is

TR ∼ Exp

(
k∑
i=1

µi −
k∑
i=2

λi − λR

)
.

2. In the scaled W model, the distribution of the number
of class R jobs in the system is

NR ∼ Geometric

(
1− λR∑k

i=1 µi −
∑k
i=1 λi

)
− 1,

and the distribution of the response time of class R jobs
is

TR ∼ Exp

(
k∑
i=1

µi −
k∑
i=1

λi − λR

)
.

Proof. To find Pr{NR = nR}, we will consider the non-
R jobs in the queue as being split into two pieces: the non-R
jobs before the first R in the queue, and the non-R jobs after
the first R in the queue. We sum over all possible lengths
of these two pieces, and all possible classes of these non-R
jobs. Let x0 be the number of non-R jobs before the first R
in the queue, and let x1 be the number of non-R jobs after
the first R in the queue. Then we have:

Pr{NR = nR} =

∞∑
x0=0

∞∑
x1=0

CηnRR X0

(
x1 + nR − 1

x1

) ∏
j≥x0
cj 6=R

X1

= CηnRR

(
∞∑

x0=0

X0

)(
∞∑

x1=0

Xx1
1

(
x1 + nR − 1

x1

))
,

where

ηR =
λR∑k
m=1 µm

,

X0 =

x0∏
j=1

∑
ci 6=R λci∑

m∈
⋃
t≤j

St
µm

,

X1 =

∑
ci 6=R λci∑k
m=1 µm

.

The sums in the numerators of X0 and X1 take into ac-
count all of the possible combinations of classes making up
the x0 and x1 jobs, respectively.

Now let C1 =
∑∞
x0=0X0 (note that this is a constant

with respect to nR). Using the identity
∑∞
i=0 p

i
(
i+n−1

i

)
=(

1
1−p

)n
for |p| < 1, we have:

Pr{NR = nR} = CC1η
nR
R

(
1

1−
∑
ci 6=R λci∑
m µm

)nR
= CC1

(
λR∑

m µm−
∑
ci 6=R

λci

)nR
.

Using the normalization equation

∞∑
nR=0

Pr{NR = nR} = 1,

we find

CC1 = 1− λR∑
m µm −

∑
ci 6=R λci

.

Hence NR ∼ Geometric(1− λR∑
m µm−

∑
ci 6=R

λci
)− 1.

Next, we obtain the Laplace transform of the response

time for class R jobs, T̃R(s), via distributional Little’s Law.
First, we consider the z-transform of the number of class-R

Poisson arrivals during T , ÂTR(z) = T̃R(λR − λRz). Class
R jobs depart the system in the same order in which they
arrive, so ATR is equivalent to NR, the number of jobs seen
by an R departure. Hence

T̃R(λR − λRz) = N̂R(z).

We know that NR is distributed Geometric(p)− 1, where

p = 1− λR∑
m µm−

∑
ci 6=R

λci
. Hence we have

T̃R(λR − λRz) = N̂R(z) =
p

1− z(1− p) .

Let s = λR − λRz, so that z = 1− s/λR. Then we have

T̃R(s) =
p

1− (1− s
λR

)(1− p) ,

which after some simplification gives

T̃R(s) =

∑
m µm −

∑
ci 6=R λci − λR∑

m µm −
∑
ci 6=R λci − λR + s

.

Hence TR ∼ Exp(
∑
m µm −

∑
ci 6=R λci − λR).

The derivation for the W model is very similar, and is
omitted here.


