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Abstract

In recent years a number of models involving different compatibilities between jobs and servers in
queueing systems, or between agents and resources in matching systems, have been studied, and, under
Markov assumptions and appropriate stability conditions, the stationary distributions have been shown to
have product forms. We survey these results and show how, under an appropriate detailed description of
the state, many existing product-form results are corollaries of similar results for the Order Independent
Queue. We also discuss how to use the product form results to determine distributions for steady-state
response times.

1 Introduction

Systems in which servers are flexible in the types of customers that they can serve, and customers are flexible
in the servers at which they can be processed, are very common in a wide range of practical settings. In call
centers, service representatives may be trained to handle different subsets of requests, or may speak different
languages. A customer who speaks only Spanish can be helped by a representative who speaks only Spanish,
or by a representative who speaks both Spanish and English, or by a representative who speaks both Spanish
and Mandarin. In computer systems, some jobs may be able to run only on those servers that have the
job’s data stored locally, other jobs may require a server with a particular combination of resources, and still
other jobs may be able to run on any server. In ride-sharing systems, drivers will only be assigned to users
that are “nearby” in some sense.

This type of model is called a skill-based server model in the call center literature. In the scheduling
literature, the compatibility constraints between job classes and servers are called eligibility constraints or
processing set restrictions, and the models are typically deterministic. For matching models, compatibilities
may be location based. While the language and notation used to describe these models differ across research
communities, the common idea in all of the above examples is that the system consists of multiple servers
and multiple classes of jobs, with a bipartite graph structure indicating which classes of jobs can be served
by which servers.

The examples above, and more broadly the “flexible job/server” models that exist in the literature, vary
in precisely how the bipartite matching structure is used to assign servers to jobs. We mainly consider
two service models, which we call the “collaborative” and “noncollaborative” models. In the collaborative
model, multiple servers can work together, with additive service rate, to process a single job. This matches
the computer systems setting, in which the same (replicated) job can run on several different servers at
once. In the noncollaborative model, a customer can only enter service at a single server. This matches the
structure of a call center, in which a single customer cannot speak with multiple representatives at the same
time. In both cases, we think of there being a single central queue for all customers. When a server becomes
available, it begins working on the next compatible job in the queue, in first-come first-served (FCFS) order.
In the noncollaborative case, we must also specify which server will serve an arriving job that finds multiple
idle compatible servers. We will consider two policies: Assign Longest Idle Server (ALIS), which is analogous
to FCFS, and Random Assignment to Idle Servers (RAIS).

An additional feature of many models of service systems with job/server compatibilities is redundancy,
or job replication, i.e., the possibility of sending multiple copies of the same job to multiple servers. For
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example, this is a common practice in computer systems to combat unpredictable system variability, so the
hope is that the job may experience a significantly shorter response time at one of the servers. Similarly, one
idea for reducing wait times on organ transplant waitlists is to allow patients to join the waitlist in multiple
geographic areas at the same time. Patients are restricted in which waitlists they can join based on travel
time: should an organ become available at a particular hospital, the patient must be able to travel to that
hospital within a relatively short time frame to receive the transplant. Generally systems with redundancy
are not modeled as a central FCFS queue as described above. Instead, each server has its own dedicated
queue and an arriving job can join the queues of multiple servers. In the collaborative case, multiple copies
of the same job can run on different servers at the same time, and when the first copy completes service all
other copies are removed immediately from other servers or queues. This is called cancel-on-completion or
late cancellation. In the noncollaborative case, all other copies of a job are removed from the system as soon
as the first copy enters service. This is called cancel-on-start or early cancellation, and it is also equivalent to
sending a single copy to the queue with the least work. In both cases, the cancellations occur without penalty.
While the central FCFS queue and the job redundancy model describe very different system dynamics, the
two views turn out to be sample-path equivalent, provided that service times are exponentially distributed
and i.i.d. across jobs and servers. We will explore this relationship, as well as other model equivalences, in
what follows.

Throughout most of this paper, we will make a few key assumptions: that jobs of each class arrive ac-
cording to independent Poisson processes, that service times are exponentially distributed and i.i.d. across
jobs and servers, and that the scheduling discipline is FCFS. Under these assumptions, we will see that the
models described and motivated above, as well as related models, exhibit product-form stationary distri-
butions. Indeed, product forms hold for several different state descriptors, each of which provides different
advantages in understanding system behavior. We first consider the most detailed state descriptor, which
tracks the classes of all jobs in the system. This description lends itself to a concise proof of the product form
for the collaborative model, due to the Order Independence (OI) results of Berezner and Krzesinski [14, 39].
We show that for the noncollaborative model, both the job queue and the idle server queue are OI queues,
resulting in a product of product forms. We extend these arguments to collaborative and noncollaborative
models with abandonments. We also show that the same product-form stationary distribution holds for
several related models, including new results for two-sided matching models with arrivals of both jobs and
servers, and for make-to-stock inventory models with back ordering.

Following the development of the product-form stationary distributions, we turn to using these results to
derive system performance metrics. We begin with class-based response time distributions. We show that if
there is a job class that is compatible with all servers, that class has an exponentially distributed response
time for the collaborative model; indeed, the response time for that class is the same as it would be for the
M/M/1 queue in which all jobs are fully flexible. For the noncollaborative model, the queueing time for that
fully flexible class is a mixture of a mass at 0 and an exponential random variable. We use this result to show
response time distributions for all job classes in the collaborative model, and queueing time distributions for
all classes in the noncollaborative model, when the compatibility matching has a nested structure.

Product-form distributions for an alternative, partially aggregated state descriptor have been derived
in the literature; we show that these results also follow as corollaries to the detailed product forms. The
partially aggregated state description allows us to derive per-class response time distributions, conditioned
on the set of busy servers and the order of the jobs they are currently serving.

We briefly discuss a related queueing model in which the state description is the number of jobs of each
class in the system (per-class aggregation). While this state space no longer yields a Markovian description
of the system evolution, it has the same steady-state per-class mean performance measures (mean number in
system, probability the system is empty) as the collaborative system. This state descriptor yields a simple,
recursive approach to derive the system load and mean response time for our models when they are not
nested.

We note that the product forms discussed in this paper are not the same as those obtained in the well-
known Jackson and Kelly networks [35, 37]. The standard Jackson and Kelly product forms arise in networks
of queues, where the state of the network can be expressed as a product of the states at each queue. In
contrast, in this paper we primarily concentrate on the internal product-form structure of the steady-state
distribution for a single queue. While most of our focus is on single nodes with flexible jobs and servers,
in the collaborative case, these nodes are quasi-reversible under our modeling assumptions, so a network of
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Figure 1: The system consists of J classes of jobs, M servers, and a bipartite matching structure indicating
which job classes can be served by which servers.

such nodes also has a product form stationary distribution. That is, in steady state the distributions of each
node will be as if they were operating independently, as is the case in Jackson and Kelly networks.

After describing our models and notation in the next section, in Section 3 we review the proof for the
product-form stationary distribution for the detailed state description of the Order Independent queue, and
show how this result can be extended to collaborative and noncollaborative queueing models; we also show
generalizations to other related systems. In Section 4 we show how response time distributions can be
obtained from the product-form results of Section 3 for the special case of nested systems. We consider
partially aggregated state descriptions in Section 5; these give us partial, conditional, results for response
times. We discuss methods of computing mean performance measures using a per-class aggregated state
description in Section 6. We end the paper with further discussion of related work and concluding thoughts.
Throughout the paper we provide pointers to the relevant literature in context.

2 Model

We note at the outset that our analysis requires a heavy dose of notation that we will often reuse and
abuse in the interest of readability and ease of understanding. Notation that we use throughout the paper
is summarized in Table 1.

We have a set of J job classes with Poisson arrivals at rates λi, and a set of M parallel servers with
exponential service rates µm, and a bipartite graph matching structure indicating which servers can serve
which job classes (see Figure 1). For job class i, let Si = {j : server j can serve class i}, and for any set of job
classes, A, let S(A) =

⋃
i∈A

Si be the set of servers that can serve any job class in set A. For example, for the

system shown in Figure 1, S1 = {1, 2} and for A = {1, 2}, S(A) = {1, 2, 3}. For server j, let Cj = {i : server
j can serve class i} be the set of job classes it can serve, and for any set of servers, B, let C(B) =

⋃
j∈B

Cj be

the set of job classes that can be served by servers in B. For example, in Figure 1, C3 = {2, 3, J} and for
B = {1, 3}, C(B) = {1, 2, 3, J}. For a subset of job classes, A, let µ(A) =

∑
m∈S(A) µm and λ(A) =

∑
i∈A λi

be the total service rate and arrival rate for job classes in A, and, abusing notation, for a subset of servers,
B, let µ(B) =

∑
m∈B µm and λ(B) =

∑
i∈C(B) λi be the total service rate and arrival rate for servers in B.

It will be clear from the context whether the arguments of λ and µ are job classes or servers. Finally, let
µ =

∑M
m=1 µm and λ =

∑J
i=1 λi be the total system service rate and total system arrival rate respectively.

Throughout, we will assume for stability that λ(A) < µ(A) for all subsets of job classes A. We note that
this condition is both necessary and sufficient for stability in the model described above [1, 25, 45].

We primarily consider two models of service: the collaborative model and the noncollaborative model. In
the noncollaborative model, a job can only be served by a single server. When the first copy of a job enters
service, all other copies are removed from the system immediately without penalty. A job that arrives to the
system and finds multiple idle compatible servers begins service on one of those servers, chosen according
to some assignment rule. We consider two assignment rules. Under Assign Longest Idle Server (ALIS), the
arriving job begins service on the compatible server that has been idle for the longest time. Under Random
Assignment to Idle Servers (RAIS), the arriving job chooses an idle server randomly; this selection must be
drawn from a particular distribution, which we discuss in more detail in Section 3.3.
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(a) Central FCFS queue (b) Collaborative model (c) Noncollaborative model

Figure 2: The system can be viewed, equivalently, as (a) having a single FCFS queue, or as being a distributed
system in (b) the collaborative model or (c) the noncollaborative model.

In the collaborative model, a job may be in service at multiple servers at the same time. When the first
copy of a job completes service, all other copies are removed from the system immediately without penalty.
A job that is in service at a set of servers B receives combined service rate µ(B), hence the job experiences an
exponential service time with rate µ(B). Unlike in the noncollaborative case, no assignment rule is needed
for an arriving job that finds multiple idle compatible servers; such a job simply enters service on all of the
idle compatible servers. Note that in the collaborative case (but not in the noncollaborative case), we can
assume without loss of generality that the set of job classes a server can serve is unique to that server, i.e.,
Ci 6= Cj for i 6= j. This follows because of the FCFS and collaborative assumptions; if Ci = Cj for i 6= j,
then servers i and j will always be serving the same (oldest compatible) job, so they can be considered to be
a single server with rate µi + µj . In the noncollaborative model we allow multiple servers that are identical
in their service rates and their sets of compatible job classes.

There are two equivalent ways of viewing the system dynamics. In the first, shown in Figure 2(a), all
arriving jobs join a single FCFS queue. When a server j becomes available, it begins working on the first
job in the central queue that has class i ∈ Cj . In the collaborative model, the “queue” contains all jobs in
the system, including those currently in service, so that a newly available server may begin working on a job
that is already in service at some other server. In the noncollaborative model, the queue contains only those
jobs that are not in service. The second system view is that of a distributed system, in which each server
has its own queue and works on the jobs in its queue in FCFS order. Here, an arriving job of class-i joins
the queue at all servers in Si. In the collaborative model (Figure 2(b)), multiple copies of the job may be
in service at different servers. For example, in Figure 2(b) the class-1 job shown at the head of the queue
at both servers 1 and 2 is in service at both servers. In the noncollaborative model (Figure 2(c)), only one
copy of a job can be in service. In our example, the class-1 job shown at the head of the queue at server 1 is
in service at server 1, and its other copy has been removed from the queue at server 2. Another equivalent
model in the noncollaborative case is to assume, again, that each server has its own dedicated queue, and
that each arriving class-i job is routed to the server in Si with the least work (i.e., Join-the-Shortest-Work
among compatible servers) [7, 10, 11].

Throughout the remainder of this paper, we will rely primarily on the central-queue view of the system
when developing our state descriptors. We introduce here the notation used in the state descriptors. This
notation captures a great deal of information about the system, and each state descriptor uses a slightly
different subset of this information to capture different aspects of the system dynamics. We elaborate further
on the specific state descriptors in the sections that follow. Let ~cn = (c1, . . . , cn) denote the classes of all jobs
in the central queue, where ci is the class of the ith job in the queue in order of arrival (so c1 is the class of
the oldest job, and cn is the class of the most recent arrival). As noted above, for the collaborative model the
“queue” refers to all jobs in the system, including those in service, whereas for the noncollaborative model
the “queue” refers to only those jobs that are not in service. Let ~bl = (b1, . . . , bl) be the vector of busy servers
in the arrival order of the jobs that they are serving (so b1 is serving the oldest job in the system, and bl
is serving the most recent arrival among the jobs in service). We use ~zm to denote, in the noncollaborative

model, an interleaving of ~cn and ~bl ordered by job arrival time, where the state tracks the job class for
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Notation Definition
J Number of job classes
M Number of servers
λi Arrival rate of class-i jobs
λ =

∑
i λi Total system arrival rate

µj Service rate at server j
µ =

∑
j µj Total system service rate

Si The set of servers that can serve class-i jobs
S(A) The set of servers that can serve any job class in subset A
Cj The set of job classes that can be served by server j
C(B) The set of job classes that can be served by any server in subset B

~cn Classes of all jobs in the queue, in order of arrival
~bl Busy servers, in the order in which they became busy
~sk Idle servers, in the order in which they became idle
~dl Classes of jobs in service, in the order in which they entered service
~nl Number of jobs not in service in between consecutive jobs in service
~xJ Number of jobs of each class in the system
~zm Interleaving of jobs in the queue and busy servers, in order of job arrival times

Table 1: Summary of notation. Top section: system notation. Bottom section: notation used in state
descriptors.

positions corresponding to jobs in the queue, and it tracks the busy server for positions corresponding to
jobs in service. Let ~sk = (s1, . . . , sk) be a vector of idle servers in the order in which they became idle,

where l + k = M . We use ~dl = (d1, . . . , dl) to denote the classes of the jobs currently in service, where di is
the class of the job in service at server bi. The vector ~nl = (n1, . . . , nl) denotes the number of jobs waiting
to be served “between” the jobs in service. That is, ni gives the number of jobs that arrived after the job
in service at server bi and before the job in service at server bi+1. Finally, ~xJ = (x1, . . . , xJ) denotes the
number of jobs of each class in the system; xi is the number of class-i jobs in the system.

3 Detailed States and Product Forms

We first consider the most complete descriptions of the state: the detailed state descriptor tracks the classes
of all jobs in the order of their arrival, denoted by ~cn. In the noncollaborative case, the two assigment rules
that we consider (ALIS and RAIS) also require us to track some information about the servers. Under ALIS
(Section 3.2), the state descriptor includes the vector ~sk, which tracks all idle servers in the order in which
they became idle. Under RAIS (Section 3.3), the state descriptor is ~zm, which is an interleaving of ~cn and
~b`, where ~bl tracks all busy servers ordered by the arrival times of the jobs they are serving.

For both the collaborative and noncollaborative (ALIS and RAIS) models, we show that the stationary
distribution for the above state descriptor exhibits a product form. We begin with the collaborative case,
which is a special case of what are known as “Order Independent”(OI) queues, so named because the total
service rate given to all jobs in the queue depends only on their classes, not on their order.

At the end of the section, we discuss related models that also have product-form stationary distributions.

3.1 The Collaborative Model and Order Independent Queues

The system state is ~cn = (c1, . . . , cn), where ci is the class of the i’th job in the system in order of arrival,
including both jobs that are in the queue and jobs that are in service (possibly at more than one server).
The subscript n can take on the values 0, 1, ...; we will generally leave this implicit. Let C be the set of all
such states. Abusing notation, let S(~cn) = S({c1, . . . , cn}) be the set of servers that can serve at least one
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Figure 3: Left: a bipartite graph structure showing job/server compatibility constraints. Right: a system
state in the collaborative model. In this example, the state is (1,2,3,2,4,1).

of the jobs in the queue, and let

µ(~cn) := µ({c1, . . . , cn}) =
∑

m∈S(~cn)

µm (1)

be the total rate of service to jobs in the queue. Also, define ∆j(~cn) as the (marginal) rate of service given
to the j’th job in the queue, so

∑n
j=1 ∆j(~cn) = µ(~cn), and

∆j(~cn) =
∑

m∈S(~cj)\S(~cj−1)

µm =
∑

m∈S(~cj)

µm −
∑

m∈S(~cj−1)

µm = µ(~cj)− µ(~cj−1).

Figure 3 shows an example of a possible state in the collaborative model. In this example, the state is
~cn = (1, 2, 3, 2, 4, 1). The class-1 job at the head of the queue is in service at both server 1 and server 2
(∆1(~cn) = µ1 + µ2), the class-2 job immediately behind it is in service at server 3 (∆2(~cn) = µ3), and the
class-4 job is in service at server 4 (∆3(~cn) = ∆4(~cn) = 0 and ∆5(~cn) = µ4). The total rate of service given
to all jobs is µ(~cn) = µ1 + µ2 + µ3 + µ4.

Note that, for the collaborative model, the total service rate µ(~cn) is independent of the order of the jobs
in the queue, and the service rate allocated to the j’th job doesn’t depend on the jobs (if any) after job j
in the queue. That is, our collaborative model is a special case of an Order Independent queue, defined as
follows.

Definition 3.1. A queue is said to be Order Independent (OI) if it satisfies the following properties for all
~cn:

(i) ∆j(~cn) = ∆j(~cj) for j ≤ n,

(ii) µ(~cn) is the same for any permutation of c1, . . . , cn,

(iii) µ(c) > 0 for any class c.

Properties (i)-(iii) are essentially the same as those defined by Krzesinski [39], though Krzesinski’s defini-
tion generalizes property (i) to also allow for an extra multiplicative service rate factor based on the number
in queue. Our collaborative model can be generalized in this way to have speed scaling, i.e., a total service
capacity of γ(n) when there are n jobs in the system. Under this generalization, µm would be interpreted as
the proportion of the total capacity used by server m, for m ∈ S(~cn). The addition of a speed-scaling factor is
straightforward, but complicates the notation, so we do not include it here. Similarly, it is straightforward to
include an arrival scaling (or rejection) factor, so that arrivals of class c occur according to a Poisson process
with rate r(n)λc when the number in queue is n, but, again, we do not include it for ease of exposition.

Property (iii) ensures irreducibility of the Markov chain. Property (ii) guarantees that the total rate of
transitions out of any state ~cn depends only on the set of customers in the queue and not on their order. A
consequence of (i) and (ii) is that ∆j(~cj) does not depend on the order of the first j − 1 jobs. As Krzesinski
shows, Properties (i)-(iii) are all that are needed to show that the stationary distribution has a product form.
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The proof below is essentially the same as Krzesinski’s [39]; the special case for the collaborative model was
shown by Gardner et al. [25].

We first recall the definition of quasi-reversibility.

Definition 3.2. A queue is called quasi-reversible if its state at time t is independent of

• arrival times after time t

• departure times before time t.

An equivalent definition is that the stationary distribution for the queue satisfies partial balance, i.e., for
any state and any class c, the steady-state rate out of the state due to a class-c arrival equals the steady-state
rate into the state due to a class-c departure, and the rate out of the state due to a departure equals the
rate in due to an arrival. Theorem 3.3 shows that the OI properties are sufficient for partial balance for the
product-form distribution, and therefore for quasi-reversibility of the system.

Theorem 3.3. (Berezner, Kriel, Krzesinski [13], Krzesinski [39]) For any OI queue, including the collabo-
rative model, the system is quasi-reversible and the stationary distribution is given by

πC(~cn) = πC(∅)
n∏
i=1

λci
µ(~ci)

=
λcn
µ(~cn)

πC(~cn−1) (2)

as long as G :=
∑
n,~cn∈C

n∏
i=1

λci

µ(~ci)
<∞. Then πC (∅) = 1/G is the probability the system is empty.

Proof. We will show that the product form of equation (2) satisfies partial balance. First note that equation
(2) immediately satisfies the condition that the rate out of any state ~cn due to a departure equals the rate
into the state due to an arrival: µ(~cn)πC(~cn) = λcnπ

C(~cn−1). Now we show that under the product-form
probabilities (2), the rate out of any state ~cn due to a class-c arrival equals the rate into the state due to a
class-c departure, ∀c:

πC(~cn)λc =

n∑
j=0

πC(c1, . . . , cj , c, cj+1, . . . , cn)∆j+1(c1, . . . , cj , c, cj+1, . . . , cn)

=

n∑
j=0

πC(c1, . . . , cj , c, cj+1, . . . , cn)∆j+1(~cj , c) (Property (i))

=
λcn

µ(~cn, c)

n−1∑
j=0

πC(c1, . . . , cj , c, cj+1, . . . , cn−1)∆j+1(~cj , c)

+
λc

µ(~cn, c)
πC(~cn)∆n+1(~cn, c) ((2) and Property (ii)).

We will show this by induction on n. For n = 0, πC(0)λc = πC(c)µ(c) is immediate, given property (iii).
Assume partial balance holds for the product-form probabilities (2) for any ~cn−1, i.e.,

πC(~cn−1)λc =

n−1∑
j=0

πC(c1, . . . , cj , c, cj+1, . . . , cn−1)∆j+1(~cj , c).

Then we need to show

πC(~cn)λc =
λcn

µ(~cn, c)

n−1∑
j=0

πC(c1, . . . , cj , c, cj+1, . . . , cn−1)∆j+1(~cj , c) +
λc

µ(~cn, c)
πC(~cn)∆j+1(~cn, c)
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From the induction hypothesis, and the definition of ∆n+1(~cn, c), the right-hand-side is:

λcn
µ(~cn, c)

πC(~cn−1)λc +
λc

µ(~cn, c)
πC(~cn)[µ(~cn, c)− µ(~cn)]

=
λcn

µ(~cn, c)
πC(~cn−1)λc + λcπ

C(~cn)− λc
µ(~cn, c)

λcn
µ(~cn)

πC(~cn−1)µ(~cn)

= πC(~cn)λc.

In the collaborative example in Figure 3, recalling that µ is the total service rate, the stationary probability
of the depicted state is

πC(~cn) = πC(∅)
(

λ1
µ2 + µ3

)(
λ2

µ1 + µ2 + µ3

)(
λ3

µ1 + µ2 + µ3

)(
λ2

µ1 + µ2 + µ3

)(
λ4
µ

)(
λ1
µ

)
.

We reiterate that the skill-based collaborative queue is a special case of an OI queue. Other queues that
are OI are the (noncollaborative) M/M/K queue with heterogeneous servers, the M/M/∞ queue, the M/M/1
queue under processor sharing, and the Multiserver Station with Concurrent Classes of Customers (MSCCC)
queue [39]. The MSCCC queue is a multi-class M/M/K/FCFS queue with the restriction that at most Bc
customers of class c can be in service (noncollaboratively) at the same time. The M/M/1/LCFS queue is
not an OI queue even though it is a symmetric queue in the sense of Kelly, and is therefore quasi-reversible.

The following corollaries, generalizing the OI queue, follow immediately from Theorem 3.3.

Corollary 3.4. The departure process from an OI queue is a Poisson process; thus a network of OI queues
will have a product-form stationary distribution.

Consider an order independent queue with abandonments, where a job of class i abandons the system
after an exponential time with rate γi. This model also fits within the OI framework (i.e., properties (i)-(iii)
are satisfied), so again has a product-form stationary distribution.

Corollary 3.5. In an order independent queue with abandonments,

πCA(~cn) = πCA(∅)
n∏
i=1

λci
µ(~ci)

=
λcn
µ(~cn)

πCA(~cn−1), (3)

where

µ(~cj) =

j∑
i=1

γci +
∑

m∈S(~cj)

µm

and
∆j(~cn) = µ(~cj)− µ(~cj−1) = γcj +

∑
m∈S(~cj)\S(~cj−1)

µm.

As Berezner and Krzesinski [14] show, the product form result for OI queues also extends easily to OI
loss models, where, following their terminology, we use the term loss in the general sense that arriving jobs
may be rejected or lost, depending on the current state. For the product-form to continue to hold, the
acceptance, or truncated, region must satisfy the truncation property: the job acceptance/rejection decision
is also order independent and rejection is more likely with more jobs. In particular, letting CT comprise the
states (~cn, c) in which jobs of class c are accepted when the state just before their arrival is ~cn, we have the
following.

Definition 3.6. A set of states CT satisfies the truncation property if:

(i) ~cn ∈ CT ⇒ P(~cn) ⊆ CT , where P(~cn) denotes the set of permutations of ~cn, and

(ii) ~cn ∈ CT ⇒ ~cn−1 ∈ CT . That is, using part (i) of the truncation property, if a job would be accepted
with a given set of jobs in the queue, it will still be accepted if any job is removed from that set.
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Letting ~x = (x1, ..., xJ) be the per-class aggregated state for ~cn (which is sufficient for the accep-
tance/rejection decision because of its OI property), the truncation property means the acceptance region
for x is coordinately convex. That is, the rejection decision is a threshold decision, such that arrivals of type
c are rejected if xc > t(x1, ..., xc−1, xc+1, ...xJ) for some function t. Simple examples include having an upper
bound on the total number of jobs, or having upper bounds on the number in each job class.

The product form, now for ~cn ∈ CT , is exactly the same, except for the normalizing constant. In other
words, the stationary probability of being in a state in CT for the loss model is the same as the conditional
probability of being in that state in the model without losses, given that the state is in CT . Let ~C ∈ C be
the random variable representing the state of the original collaborative system, with no rejections, in steady
state, i.e., ~C ∼ πC . Let ~CT ∈ CT and πCT be similarly defined for the model with rejections.

Corollary 3.7. For an OI queue with job rejection, if the acceptance region CT satisfies the truncation
property, then

P{~CT = ~cn} = P{~C = ~cn|~C ∈ CT } = πCT (~cn) = πCT (∅)
n∏
i=1

λci
µ(~ci)

=
λcn
µ(~cn)

πC(~cn−1) for ~cn ∈ CT ,

where πCT (∅) = πC(∅)/P{~C ∈ CT }.

Proof. To see that πT has the given product form, note that for states and transitions to states in CT the
same partial balance equations hold as for the original OI queue, and for transitions where some of the states
are not in CT , the partial balance equations are easily seen to reduce to 0 = 0 because of the truncation
property. For example, if ~cn ∈ CT , but (~cn, c) /∈ CT , then the rate out of ~cn due to a class-c arrival is 0, and
the rate into ~cn due to a class-c departure is also 0, because πCT (~cn, c) = 0 for all permutations of (~cn, c).
Also, for ~cn ∈ CT ,

P{~C = ~cn|~C ∈ CT } =

πC(∅)
n∏
i=1

λci

µ(~ci)∑
j

∑
~cj∈CT π

C(~cj)
= G

n∏
i=1

λci
µ(~ci)

where G = πC(∅)/P{~C ∈ CT } is a normalizing constant, and, because of the form of πCT , G = πCT (∅).

The following special cases will be useful later. Let the subscript −A represent the system where all job
classes in A are removed. Let the subscript ` B represent a reduced system in which all the servers in set
B are removed, as well as all job classes that are compatible with those servers, i.e., job class i is removed
if Si ∩B 6= ∅. Note that if the original system is stable, such subsystems also will be stable.

Corollary 3.8. (i) For all ~cn ∈ C−A

P{~C = ~cn|~C ∈ C−A} = P{~C−A = ~cn} = πC−A(~cn).

(ii) For all ~cn ∈ C`B
P{~C = ~cn|~C ∈ C`B} = P{~C`B = ~cn} = πC`B(~cn).

We mention here a recent extension of the OI queue by Comte and Dorsman [24], the “pass and swap”
queue. In their model there is an undirected graph linking the classes of the OI queue, such that an edge
between two classes indicates that they are “swappable.” The service process satisfies the conditions of the
OI queue, but now when a job completes service or is replaced, it in turn replaces a later, swappable job
in the queue. A job that completes or is replaced and that finds no later swappable job leaves the system.
Comte and Dorsman show that the same product form steady-state distribution holds for the pass and swap
queue.
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Figure 4: A system state in the noncollaborative model. In this example, the state is (3, 2, 3, 2; 4, 1).

3.2 The Noncollaborative Service Model: Assign Longest Idle Server

We now turn to the noncollaborative model, in which a job is only allowed to enter service on one server
and services are completed nonpreemptively. For this model we must also specify which server is used when
an arriving job finds multiple idle and compatible servers; in this section we assume that this is according
to Assign Longest Idle (compatible) Server (ALIS), and we will use the superscript ALIS for the stationary
distribution.

For the noncollaborative ALIS model we define the state as (~cn, ~sk) where ci is the class of the i’th oldest
job that is not receiving service, and si is the idle server that has been idle i’th longest (out of k that are
idle). Note that unlike in the collaborative model, here the ~cn vector includes only those jobs that are in the
queue waiting for service (we will call this the job queue) and not jobs that are in service.

Figure 4 shows an example of a possible state in the noncollaborative ALIS model. The state here is
(3, 2, 3, 2; 4, 1). The class-3 job at the head of the queue is waiting to enter service on server 3, and the class-2
job immediately behind it is waiting to enter service on server 2 or server 3. Servers 4 and 1 are idle, and
server 4 became idle before server 1. While our state does not explicitly record the positions of the busy
servers within the job queue, we can infer that, for any job class c that appears in the job queue, all servers
in S(c) are serving jobs that arrived earlier than that class-c job. For example, we can tell from the state of
the job queue that server 2 is serving a job that arrived earlier than the first class-2 job in the queue.

We define the set of valid states, XALIS , as those states (~cn, ~sk) such that si /∈ S(~cn), i = 1, . . . , k. That
is, XALIS = CC`~sk × S, where S is the set of all permutations of all subsets of {1, ...,M}, and CC`~sk is the set
of valid states for the system queue (including jobs in service) for the reduced collaborative model with the
servers in ~sk removed. Defining, as before,

µ(~cn) =
∑

m∈S(~cn)

µm

we now have that µ(~cn) is the rate at which one of the first n jobs in the job queue leaves the queue (and
enters service), and ∆j(~cn) = ∆j(~cj) = µ(~cj) − µ(~cj−1) is the rate at which the j’th job in the job queue
leaves the queue (and enters service). The OI properties (i)-(iii) given in Definition 3.1 continue to hold for
∆j(~cn) and µ(~cn). Indeed, given ~sk, the job queue is an OI loss queue. In state (~cn, ~sk) an arrival of class c
will be rejected from the job queue (and it will remove a server from the idle-server queue) if si ∈ S(c) for
some i = 1, ..., k. The state-dependent acceptance region for the job queue, S(~sk), satisfies the truncation
property of the OI loss queue given in Definition 3.6.

We now consider the idle server queue. Let λ(~sj) be the rate of arrivals of jobs that are compatible with
one of the first j (idle) servers, i.e., the rate of departures from the idle server queue when it is in state ~sj .
For k ≥ j, let

∆λ
j (~sk) = λ(~sj)− λ(~sj−1) =

∑
i∈C(~sj)\C(~sj−1)

λi ≥ 0
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be the rate at which the j’th idle server will become busy (leave the idle server queue). Note that we have
the same OI properties (i)-(iii) for λ(~sk) and ∆λ

j (~sn) as we had for µ(~cn) and ∆j(~cn):

(i) ∆λ
j (~sk) = ∆λ

j (~sj) for j ≤ k,
(ii) λ(~sj) is the same for any permutation of s1, . . . , sj (order independence),
(iii) λ(s) > 0 for any server s.
That is, given ~cn, the idle server queue is also an OI loss queue, where we can think of servers of type

s arriving according to a Poisson process at rate µs, but if the server is already in the queue in state ~sk,
or if it will remain busy serving another job, i.e., if s ∈ ~sk ∪ S(~cn), then the arrival is rejected. Hence, the
acceptance region for the idle-server queue, given ~cn, also satisfies the truncation property.

The stationary distribution of the noncollaborative ALIS model has a “product of product forms” distri-
bution, with a product form component for the job queue and one for the idle server queue.

Theorem 3.9. (Adan et al. [5]) For the noncollaborative model, under FCFS for jobs and ALIS for servers,
and given the stability condition, for (~cn, ~sk) ∈ X ,

πALIS(~cn, ~sk) = πALIS(∅, ∅)
n∏
i=1

λci
µ(~ci)

k∏
j=1

µsj
λ(~sj)

(4)

=
λcn
µ(~cn)

πALIS(~cn−1, ~sk) =
µsk
λ(~sk)

πALIS(~cn, ~sk−1), (5)

where πALIS(∅, ∅) is a normalizing constant equal to the probability that all servers are busy and that there
are no jobs waiting in the queue.

Proof. Note that if there is an arrival to or departure from the job queue, the state of the idle servers do
not change, and if there is an arrival to or departure from the set of idle servers, the state of the job queue
does not change. Thus, the proof that the product form with πALIS(~cn, ~sk) =

λcn

µ(~cn)
πALIS(~cn−1, ~sk) satisfies

partial balance for job queue arrivals and departures, for fixed ~sk, is exactly the same as for our earlier proof
for Theorem 3.3, using the truncation property of our acceptance region for job queue arrivals. For the idle
server queue, fixing ~cn, the proof that the rate out of (~cn, ~sk) due to departures of idle servers equals the
rate in due to arrivals of idle servers is immediate from πALIS(~cn, ~sk) =

µsk

λ(~sk)
πALIS(~cn, ~sk−1). Finally, the

proof that the rate of leaving state πALIS(~cn, ~sk) due to server s becoming idle (arriving to the idle server
queue) equals the rate of entering the state due to server s becoming busy (leaving the queue), for s /∈ ~sk,
is also very similar to our earlier induction proof. Note that to transition out of state (~cn, ~sk) due to the
arrival of server s to the idle server queue, s must both be busy and not have any compatible jobs in the job
queue, i.e., s /∈ ~sk ∪ S(~cn).

In the example shown in Figure 4, the stationary probability is

πALIS(~cn, ~sk) = πALIS(∅, ∅)
(
λ3
µ3

)(
λ2

µ2 + µ3

)(
λ3

µ2 + µ3

)(
λ2

µ2 + µ3

)(
µ4

λ4

)(
µ1

λ1 + λ4

)
.

3.3 The Noncollaborative Service Model: Random Assignment to Idle Servers

We next consider the noncollaborative model where, instead of using ALIS to choose an idle server among
compatible servers for an arriving job, servers are chosen randomly among idle compatible servers with
appropriate probabilities that depend only on the set of busy (or idle) servers [45]. The results given in [45]
use the partially aggregated state space we discuss in Section 5, but, as we will show, a product-form result
also holds for a detailed state descriptor similar to the one used for the collaborative model. Unlike under
ALIS, under RAIS the order of the idle servers no longer matters. Instead, for this version of the model we
keep track of the busy servers, ~bl, where there are l busy servers, and where the servers are ordered by the
arrival times of the jobs they are serving. To obtain a product-form stationary distribution, we need our
state to be even more detailed: we must track not only the order of the busy servers, but the positions of the
busy servers within the job queue. Our detailed state description for RAIS is thus ~zm, where m denotes the
number of jobs in the system (including both jobs in the queue and jobs in service), and zi is associated with
the i’th job in the system in order of arrival. This is similar to the state ~cn state used for the collaborative
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model, with one key difference: the ~zm state does not track the classes of jobs that are in service, instead it
tracks the servers that are serving them. That is, we let zi = c if the i’th job in the system has not started
service (it is in the job queue), and zi = b if the i’th job in the system is in service on server b. Note that ~zm
consists of an interleaving of the states of the job queue, ~cn, and of the busy server queue, ~bl. The possible
states for ~zm, XRAIS , are such that ~bl ⊆ {1, ...,M}, and for any position i, if zi = c, all compatible servers
are serving earlier arrivals, i.e., S(c) ⊆ ~zi−1, because of the FCFS service discipline.

In order to completely define the RAIS policy, we must specify the probability that an arriving job
enters service at compatible idle server s /∈ {b1, . . . , bl}. When the set of ordered busy servers is ~bj , let

λas(~bj) represent the activation rate of idle server s /∈ {b1, ..., bj} (the rate of going from state ~bj to (~bj , s)
for any ~cn). We allow the activation rates to depend only on the set of busy servers, not on their order.
Indeed, as Visschers et al. showed for their aggregated state description of this model [45], in order for
the stationary distribution to have a product form, we need the following stronger condition, called the

assignment condition. Let Πλ(~bl) =
l∏

j=1

λabj (~bj−1). The assignment condition requires that the probabilities

for routing to compatible idle servers be chosen so that Πλ(~bl) depends only on the set of busy servers, not

on their order (i.e., so that Πλ(~bl) is the same for any permutation of b1, . . . , bl). Visschers et al. show that it
is always possible to choose assignment probability distributions so that the assignment condition holds [45];
the derivation involves solving a max flow problem for each subset of busy servers.

One way to interpret the assignment condition is to consider the loss system in which customers are not
allowed to queue, so that the state is just ~bl, the set of busy servers. Then the assignment condition, along
with the fact that µ(~bl) doesn’t depend on the order of busy servers, reduces to Kolmogorov’s criterion for
reversibility of Markov chains, namely that the product of the transition probabilities along any path from a
state back to itself is the same if the states are traversed in the reverse order. For example, consider the path
traversing the states ∅, (u), (u, v), (v), ∅, where u and v are two servers. Then the probability of traversing
that path is Cλau(∅)λav(u)µuµv where C is an appropriate normalizing constant, and the probability for the
reverse path, in which v is activated first and finishes first, is Cλav(∅)λau(v)µuµv. These are the same, given
the assignment condition: λau(∅)λav(u) = λav(∅)λau(v). Indeed, Adan, Hurkens, and Weiss showed that the
loss model (under the assignment condition) is reversible, has a product-form stationary distribution, and is
insensitive to the service time distribution [4]. We also note that the same is true for the loss model under
ALIS [3]. (Recall that the idle server queue is an OI queue.) Haji and Ross [33] further showed that if the
bipartite matching structure satisfies an exchangeability assumption, the same result holds for any policy for
assigning a job to a compatible server, as long as the assignment policy depends only the ordered queue of
idle servers (ordered by the times at which they became idle). Indeed, under the exchangeability assumption,
all orders are equally likely.

Let µ(~zi) =
∑i
j=1 I(zj)µzj , where I(zj) is an indicator that is 1 if zj corresponds to a busy server and 0

if it corresponds to a job in the job queue. Note that µ(~zm) satisifies the conditions for order independence,
with ∆j(~zm) = ∆j(~zj) = µ(~zj) − µ(~zj−1). Let λzi (~zi) = λzi (~zm) = λc if zi = c for some job class c, and, if

zi = b for some busy server b, let λzi (~zi) = λzi (~zm) = λab (~bk(i)), where k(i) =
∑i−1
j=1 I(zj) is the number of busy

servers in the first i−1 positions (the number of servers serving the first i−1 arrivals). Note that λzm(~zm) is
the same for any permutation of ~zm−1 regardless of whether zm is a waiting job or a busy server, and, from the
assignment condition, for any ~zm ∈ XRAIS , λzm−1(~zm−1)λzm(~zm) = λzm−1(~zm−2, zm)λzm(~zm−2, zm, zm−1) =
λzm−1(~zm−2, z)λ

z
m(~zm).

Theorem 3.10. For the noncollaborative model, under FCFS for jobs and random assignment to idle servers,
and under the assignment condition and the stability condition, for ~zm ∈ X ,

πRAIS(~zm) = πRAIS(∅)
m∏
i=1

λzi (~zi)

µ(~zi)
=
λzm(~zm)

µ(~zm)
πRAIS(~zm−1),

where πRAIS(∅) is a normalizing constant that represents the probability that the system is empty (i.e., that
there are no busy servers and no jobs in the queue).

Before proving Theorem 3.10, we give a brief example of the system state and stationary probability
under RAIS. Consider the example in Figure 4. The state under RAIS is ~zm = (3b, 3c, 2b, 2c, 3c, 2c), where
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we use a subscript of b or c to indicate whether the entry in ~zm corresponds to a job that is waiting for
service in the job queue (subscript c) or to a busy server (subscript b). Note that for jobs in the job queue
the notation ic indicates that the job in this position is class-i, whereas for busy servers the notation jb
indicates that server j is in this position (that is, we do not track the classes of jobs in service). The state

~zm is an interleaving of ~cn = (3, 2, 3, 2) and ~bl = (3, 2). The stationary probability for this state is

πRAIS(~zm) = πRAIS(∅)
(
λa3(∅)
µ3

)(
λ3
µ3

)(
λa2(3)

µ3 + µ2

)(
λ2

µ3 + µ2

)(
λ3

µ3 + µ2

)(
λ2

µ3 + µ2

)
.

We are now ready to prove Theorem 3.10.

Proof. Fix ~zm ∈ XRAIS , with corresponding ~bl. We will show that partial balance holds in three steps:

1. The rate out of state ~zm due to a service completion equals the rate into state ~zm due to an arrival.

2. The rate out of state ~zm due to server b becoming busy equals the rate into state ~zm due to server b
becoming idle.

3. The rate out of state ~zm due to a class-c job arrival to the job queue equals the rate into state ~zm due
to a class-c departure from the job queue.

1. First suppose zm = bl, so ~zm = (~zm−1, bl). Then our product form immediately satisfies µ(~zm)πRAIS(~zm) =

λabl(
~bl−1)πRAIS(~zm−1), i.e., the rate of transitions out of state ~zm due to a service completion equals the rate

into ~zm due to a new server arrival, i.e., of server bl going from idle to busy and serving the most recently
arriving job. If zm 6= bl then it is not possible to enter state ~zm with an idle server becoming busy. Now
suppose zm = cn. In this case we have, for our product form, µ(~zm)πRAIS(~zm) = λcnπ

RAIS(~zm−1), i.e., the
rate of transitions out of state ~zm due to a service completion equals the rate into ~zm due to a new arrival
to the job queue. Note that cn is such that S(cn) ⊆ ~bl.

2. We now show that under the product-form probabilities above, the rate out of state ~zm due to the
(external) arrival of any server b /∈ ~bl to the busy server queue equals the rate into the state due to server b’s

departure from the busy server queue. Note that because ~zm ∈ XRAIS and b /∈ ~bl, none of the jobs in the
job queue are compatible with server b, so a job completion at server b in state (z1, . . . , zj , b, zj+1, . . . , zm)
will result in server b leaving the busy server queue. Using the OI properties of µ(~zm), and that λzm(~zm) is
the same for any permutation of ~zm−1, we need to show that the given product form satisfies

πRAIS(~zm)λzm+1(~zm, b) =

m∑
j=0

πRAIS(z1, . . . , zj , b, zj+1, . . . , zm)∆j+1(~zj , b)

=
λzm+1(~zm−1, b, zm)

µ(~zm, b)

m−1∑
j=0

πRAIS(z1, . . . , zj , b, zj+1, . . . , zm−1)∆j+1(~zj , b)

+
λzm+1(~zm, b)

µ(~zm, b)
πRAIS(~zm)∆m(~zm, b). (6)

We use induction on m; the induction hypothesis is that

πRAIS(~zm−1)λzm(~zm−1, b) =

m−1∑
j=0

πRAIS(z1, . . . , zj , b, zj+1, . . . , zm−1)∆j+1(~zj , b).

Then the RHS of (6) is

λzm+1(~zm−1, b, zm)

µ(~zm, b)
πRAIS(~zm−1)λzm(~zm−1, b) +

λzm+1(~zm, b)

µ(~zm, b)
πRAIS(~zm)[µ(~zm, b)− µ(~zm)]

=
λzm+1(~zm−1, b, zm)

µ(~zm, b)
πRAIS(~zm−1)λzm(~zm−1, b) + λzm+1(~zm, b)π

RAIS(~zm)

−
λzm+1(~zm, b)

µ(~zm, b)

λzm(~zm)

µ(~zm)
πRAIS(~zm−1)µ(~zm)

= πRAIS(~zm)λzm+1(~zm, b)
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where λzm(~zm−1, b)λm+1(~zm−1, b, zm) = λzm(~zm)λzm+1(~zm, b) from the assignment condition.
3. Finally, we show that the rate out of ~zm due to a class-c arrival to the job queue equals the rate in

to state ~zm due to a class-c job queue departure, for each c such that S(c) ⊆ ~bl. Fix c and ~zm and call
the class-c job whose departure causes the system to enter state ~zm the tagged job. Let ~z′m+1 denote the
system state just before the tagged job leaves the job queue. The transition from ~z′m+1 to ~zm is triggered
by a service completion at some server b ∈ S(c). In ~z′m+1 it must be the case that b, and all other servers
in S(c), are serving jobs that arrived earlier than the tagged job. At the service completion on server b, the
job it is working on leaves, and server b takes the position of the tagged job. Therefore, server b’s position
in ~zm, after the service completion, must be after all the other servers in S(c). Call this position κ. Before
the transition, in state ~z′m+1, the tagged job must be in position κ + 1, and server b must be in position
j + 1 ≤ κ. Thus, we need to show that

πRAIS(~zm)λc =

κ−1∑
j=0

πRAIS(z1, . . . , zj , b, zj+1, .., zκ−1, c, zκ+1, . . . , zm)∆j+1(~zj , b).

First suppose zm = b, i.e., κ = m. Then we want to show that

πRAIS(~zm−1, b)λc =

m−1∑
j=0

πRAIS(z1, . . . , zj , b, zj+1, .., zm−1, c)∆j+1(~zj , b). (7)

Suppose, using induction on m, that

πRAIS(~zm−2, b)λc =

m−2∑
j=0

πRAIS(z1, . . . , zj , b, zj+1, .., zm−2, c)∆j+1(~zj , b).

Note that for j < m− 1,

πRAIS(z1, . . . , zj , b, zj+1, .., zm−1, c) =
λc

µ(~zm−1, b)

λzm−1(~zm−1)

µ(~zm−1, b)
πRAIS(z1, . . . , zj , b, zj+1, .., zm−2)

= πRAIS(z1, . . . , zj , b, zj+1, .., zm−2, c, zm−1)

=
λzm−1(~zm−1)

µ(~zm−1, b)
πRAIS(z1, . . . , zj , b, zj+1, .., zm−2, c).

Thus, the RHS of (7) is

λzm−1(~zm−1)

µ(~zm−1, b)

m−2∑
j=0

πRAIS(z1, . . . , zj , b, zj+1, .., zm−2, c)∆j+1(~zj , b) +
λc

µ(~zm−1, b)
πRAIS(~zm−1, b)∆m(~zm−1, b)

=
λzm−1(~zm−1)

µ(~zm−1, b)
πRAIS(~zm−2, b)λc +

λc
µ(~zm−1, b)

πRAIS(~zm−1, b) [µ(~zm−1, b)− µ(~zm−1)]

=
λzm−1(~zm−1)

µ(~zm−1, b)
πRAIS(~zm−2, b)λc + λcπ

RAIS(~zm−1, b)−
λc

µ(~zm−1, b)

λzm−1(~zm−1)

µ(~zm−1)
πRAIS(~zm−2, b)µ(~zm−1)

= λcπ
RAIS(~zm−1, b).

Now suppose κ < m, so ~zm = (z1, ..., zκ−1, b, zκ+1, ..., zm). Then we want to show that

πRAIS(z1, ..., zκ−1, b, zκ+1, ..., zm)λc =

κ−1∑
j=0

πRAIS(z1, . . . , zj , b, zj+1, .., zκ−1, c, zκ+1, . . . , zm)∆j+1(~zj , b),

i.e.,

m∏
i=κ+1

λzi (~zi)

µ(~zi)
πRAIS(~zκ−1, b)λc =

m∏
i=κ+1

λzi (~zi)

µ(~zi)

κ−1∑
j=0

πRAIS(z1, . . . , zj , b, zj+1, .., zκ−1, c)∆j+1(~zj , b).
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From our previous argument we have

πRAIS(~zκ−1, b)λc =

κ−1∑
j=0

πRAIS(z1, . . . , zj , b, zj+1, .., zκ−1, c)∆j+1(~zj , b),

and the result follows.

3.4 Relationship between Collaborative and Noncollaborative Models

The product form stationary probabilities for the collaborative model and the ALIS noncollaborative model

both include the term
∏n
i=1

λci

µ(~cn)
. Given the similarities in the stationary distributions, it is natural to ask

whether the two systems also are similar in their more detailed evolution. Indeed, Adan et al. observed that
when all servers are busy (i.e., the idle-server queue is empty, ~sk = ∅ under ALIS) the path-wise evolution
of the state ~cn (i.e., the jobs in queue) in the noncollaborative model is the same as the evolution of ~cn (jobs
in system) in the collaborative model [5]. We generalize this observation to relate the path-wise evolution
of the two systems conditioned on the set of idle servers. Note that while the set of idle servers is fixed, we
need not worry about how jobs are assigned to idle servers.

Observation 3.11. Conditioned on the set of idle servers, ~sk, and while those servers remain idle, the
path-wise evolution of ~cn (jobs in queue) for the noncollaborative model (under either RAIS or ALIS) is the
same as that of ~cn (jobs in system) for the truncated collaborative model with the servers in ~sk removed.

Observation 3.11 tells us that, with coupled arrivals and service completions and the same initial ~cn, a
service completion removes a job from the system for the collaborative model and removes the corresponding
job from the job queue in the noncollaborative model. In the noncollaborative model, another job that does
not appear in ~cn will also leave the system (and will be replaced at the server by the job leaving the job
queue). We note that the path-wise coupling still holds for general (coupled) arrival processes, not just
Poisson processes.

Our path-wise equivalence between the job queue in the noncollaborative model conditioned on the set
of busy servers and the system queue for the collaborative model with the idle servers removed, is somewhat
analogous to the observation of Borst et al. of the equivalence between the jobs in system in a processor
sharing model with the jobs in queue for a nonpreemptive random-order-of-service model [18].

The correspondence between the collaborative and noncollaborative models will be useful when we move
from the stationary distribution to performance metrics such as per-class response time distributions. In
Section 4, we will see that these performance metrics often are more straightforward to derive in the collab-
orative model. The relationship between the two models allows us to apply our results in the collaborative
model to the noncollaborative model. One consequence of this relationship is the following corollary.

Corollary 3.12. Let πALISs (~sk) be the probability that servers s1, ..., sk are idle, in that order, in steady-state
for the noncollaborative model under ALIS. Then

πALISs (~sk) =
πALIS(∅, ∅)
πC`~sk(∅)

k∏
j=1

µsj
λ(~sj)

.

Proof. From Theorem 3.9 and Corollary 3.8, we have

πALISs (~sk) =
∑

~cn∈C`~sk

πALIS(~cn, ~sk) = πALIS(∅, ∅)
k∏
j=1

µsj
λ(~sj)

∑
~cn∈C`~sk

n∏
i=1

λci
µ(~ci)

=
πALIS(∅, ∅)
πC`~sk(∅)

k∏
j=1

µsj
λ(~sj)

∑
~cn∈C`~sk

πC`~sk(∅)
n∏
i=1

λci
µ(~ci)

=
πALIS(∅, ∅)
πC`~sk(∅)

k∏
j=1

µsj
λ(~sj)

.
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3.5 Token Models

Two generalizations, combining aspects of the collaborative and noncollaborative models, have recently been
introduced using the notion of “tokens” [12, 23]. In these models tokens generalize the notion of servers
in the noncollaborative model. There is a bipartite compatibility matching between job classes and tokens,
jobs must have tokens to enter service, and a token can be assigned to only one job at a time. Jobs of class
i arrive according to a Poisson process at rate λi, and can be matched to tokens in set Si. In the first token
model, Ayesta et al. [12] allow jobs to wait for tokens and assume that when an arriving job sees multiple idle
compatible tokens, it is assigned a token according to RAIS (or RAIT: Random Assignment to Idle Tokens).
In the second token model, Comte [23] assumes a loss model, in which jobs that arrive when no compatible
tokens are available are lost, and that idle tokens are assigned according to ALIS (or ALIT: Assign Longest
Idle Token). We describe these models in more detail below.

3.5.1 Token Model under RAIS

In the model of Ayesta et al. [12], given the set of busy tokens ~bl, listed in the order of the arrival times of the

jobs they are serving, and idle token s, the activation rate λas(~bl) (i.e., the rate at which s will be assigned to
an arriving compatible job) satisfies the same assignment condition as in the noncollaborative RAIS model.

The service process, given ordered busy tokens ~bl, is generalized from the skill-based collaborative model to
the OI queue. That is, defining ∆j(~bl) as the (marginal) rate of service given to the job with the j’th busy

token and µ(~bl) =
∑m
k=1 ∆k(~bl), the following OI conditions are assumed, as in Definition 3.1:

(i) ∆k(~bl) = ∆k(~bk) for j ≤ l,
(ii) µ(~bl) is the same for any permutation of b1, . . . , bl (order independence),
(iii) µ(b) > 0 for any busy token b.
Like Krzesinski [39], Ayesta et al. also allow the service rate to be multiplied by a factor that is a function

of the total number of tokens in service. We continue to omit that factor for simplicity.
Let us define the state, as we did for the noncollaborative RAIS model, as ~zm where zi is associated with

the i’th arrival in the system, zi = c if the arrival is of class c and does not yet have a token, and zi = b if
it has token b. We also define λi(~zi) as we did for the noncollaborative RAIS model. Note that our proof of

Theorem 3.10 did not use the particular form of µ(~bl), only its OI properties. (In particular, we showed the
result for general µ(~zm) and ∆j(~zm)). Hence, Theorem 3.10 also holds for the token model.

As Ayesta et al. note [12], the noncollaborative model is recovered when tokens correspond to the servers
of the noncollaborative model, and the original OI queue (including the collaborative model) is recovered
when each arriving job immediately obtains a token directly corresponding to its class (so there is an infinite
supply of tokens, and activation rates need not be included).

3.5.2 Token Loss Model under ALIS

Comte introduced a related, multi-layered, token loss model that generalizes the noncollaborative model
operating under ALIS [23]. The terminology and notation used in Comte’s model are a bit different from
ours; Comte refers to job “type” where we use job “class,” and to token “classes” where we use “tokens”.
(We allow distinct tokens to have the same job class compatibilities and speeds.) In Comte’s model, and in
contrast to that of Ayesta et al., a job that arrives when there is no available compatible token is lost, and
a job that arrives to find multiple compatible tokens takes the token that has been idle longest. Hence, in
this model, the state is (~bl, ~sk) where ~bl is the set of busy tokens listed in the order of the arrival times of
their corresponding jobs and ~sk is the set of idle tokens in the order in which they became idle. Note that,
because jobs cannot wait for tokens, there is no ~cn component of the state, so ~bl corresponds directly to ~zm
of the noncollaborative RAIS model. Also, tokens alternate between being busy and idle, and therefore ~bl
lists the busy tokens in the order in which they became busy, i.e., their order of arrival to the busy token
queue.

Instead of assuming a generic OI service process µ(~bl) for serving tokens, as in Ayesta et al.’s model,
Comte assumes a collaborative service model. That is, there is another bipartite matching layer between
tokens and servers that defines the total service rate µ(~bl) when the ordered set of busy tokens is ~bl, and

such that µ(~bl) satisfies the OI conditions. Note that when the idle token queue is in state ~sk, the rate at
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which tokens leave, λ(~sk), is the rate at which jobs compatible with one of the idle tokens arrive, and, as in
the noncollaborative ALIS model, λ(~sk) also satisfies the OI conditions 3.1. Because there is a finite set of
tokens, we have a closed network of two OI queues, and because OI queues are quasi-reversible, the closed
token (CT) network also has a product-form distribution. In particular, for (~bl, ~sk) ∈ X T , where X T is the
set of states such that each token appears exactly once, i.e., l + k equals the total number of tokens and
(~bl, ~sk) is an arbitrary permutation of the set of tokens, we have

πCT (~bl, ~sk) = GCT
l∏
i=1

1

µ(~bi)

k∏
i=1

1

λ(~si)

where GCT is a normalizing constant. This result would also hold assuming a general OI process for “serving”
busy tokens rather than the collaborative service model.

3.6 Discrete-time OI Queues and Matching Models

Adan et al. [5] introduced a matching model, called the directed bipartite matching (DBM) model, with a
bipartite matching between servers and jobs, and in which both servers and jobs arrive according to Poisson
processes, but only jobs can queue to wait for servers. Servers of type j arrive according to an independent
Poisson process with rate µj , and the other parameters of the model are the same as for the collaborative
model. The state is again ~cn. An arriving server matches with the first compatible job in the queue, if any,
and the server, along with its job if there is one, immediately leaves. The DBM model captures important
features of organ transplant waitlists, where patients wait for organs, but unmatched organs are lost, and
where compatibilities are determined by biological factors such as blood types, as well as the locations of
the patients and organs. As Adan et al. show, the Markov chain for this model is sample-path equivalent
to that of the collaborative model; in particular, the departure rate from the queue in state ~cn is µ(~cn) as
defined earlier. Therefore the matching model has the same, product-form, stationary distribution given in
Theorem 3.3. The result also holds for a more general OI matching, i.e., when there are no server types, but
a job will be matched to a server at rate µ(~cn) when the state is ~cn and µ(~cn) satisfies the OI conditions
(i)-(iii). The state process for the matching model is also equivalent to the queue process of a variant of
the noncollaborative model in which we keep all the servers busy by assigning a server that becomes idle
and that does not find a waiting compatible job a “dummy job.” This might be appropriate in a call center
context in which servers that would be otherwise idle handle outgoing calls or email.

If we ignore the timing between arrivals and departures in the matching model described above, we have
an equivalent discrete-time model, in which at most one event (a job arrival or a server arrival/job departure)
can occur in any time slot. Now λc is the probability of a class-c arrival and, when the state is ~cn, µ(~cn)
represents the probability of a job completion (or a job-server matching) in the next time slot, µ(~cn) ≤ 1.
Also, we need not assume a set of servers with a bipartite-matching graph, just that µ(~cn) satisfies the OI
conditions. Then the transitions of the Markov chain ~cn for the discrete-time queue will be sample-path
equivalent to the transitions of the embedded Markov chain for the continuous-time OI queue, and, again,
the same product form will hold for the steady-state distribution. The DBM special case, with server/job
compatibilities, is considered by Weiss [46]. Here a server of type s arrives with probability µs and matches
with the earliest compatible job if there is one; the server immediately departs (along with any matching
job).

The DBM model discussed in [5] does not allow unmatched servers to wait for jobs. We now show that
the DBM model can be extended to include a “server queue” in which unmatched servers wait in FCFM
(first-come-first-matched) order. This yields something somewhat analogous to the noncollaborative ALIS
model. For stability, we must have an upper bound, K, on the server queue. Let us call this (new) model
the DBM(K) model. Then the stability condition for the DBM(K) model will be the same as for the DBM
=DBM(0) model, i.e., λ(A) ≤ µ(A) for all subsets of job classes A, where µ(A) is the rate of arrivals of
servers compatible with job classes in A in the continuous-time model, and is the probability of such an
arrival in the discrete-time version. The state is (~cn, ~sk) ∈ XDBM(K), where ~cn is the set of waiting jobs in
arrival order, ~sk is the set of waiting servers in arrival order, and the set of valid states, XDBM(K), comprises
those states (~cn, ~sk) such that k ≤ K and si /∈ S(~cn), i = 1, . . . , k. Again, both the job queue and the
server queue are order independent, so the steady-state distribution will have the same form as that of the
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noncollaborative ALIS model, though the latter includes a particular loss model for the idle-server queue, so
its set of valid states is restricted to ~sk such that each server appears in ~sk at most once.

Theorem 3.13. For the stable directed bipartite matching model with a finite buffer for servers K, DBM(K),

πDBM(K)(~cn, ~sk) = πDBM(K)(∅, ∅)
n∏
i=1

λci
µ(~ci)

k∏
j=1

µsj
λ(~sj)

,∀(~cn, ~sk) ∈ XDBM(K).

By symmetry, a similar result holds if the server buffer is infinite, but the job buffer is bounded by some
N . Now the stability condition is µ(B) ≤ λ(B) for all subsets of server types B.

Note that the continous-time DBM(K) model also models a make-to-stock inventory system with a
bipartite graph representing preferences of customer classes for certain types of items. Customers of class i
are willing to purchase any of the items in Si. Items of type j are produced according to a Poisson process at
rate µj as long as the total number of items is less than the overall base-stock level K. Queueing customers
represent back orders. Also, from 3.7, the result holds when we have different base-stock levels for different
types of items.

Our results also extend to DBM models with abandonments and finite or infinite buffers. These models
are appropriate for car sharing applications and other two-sided queues, where, for example, classes of jobs
and types of servers correspond to location preferences. Suppose jobs (riders) of class i arrive (request rides)
according to a Poisson process with rate λi, and will wait for an exponential time at rate γi before abandoning
their request. Servers (drivers) of type j arrive according to a Poisson process at rate µj and will wait an
exponential time at rate νj for a rider before leaving the platform. We assume a bipartite matching graph
as defined earlier. Because of the abandonments, stability will not be an issue, even for infinite buffers. We
have the following.

Theorem 3.14. For the directed bipartite matching model with abandonments (DBMA) and finite or infinite
buffers for jobs and servers,

πDBMA(~cn, ~sk) = πDBMA(∅, ∅)
n∏
i=1

λci
µ(~ci)

k∏
j=1

µsj
λ(~sj)

,∀(~cn, ~sk) ∈ XDBMA,

where

µ(~cj) =

j∑
i=1

γci +
∑

m∈S(~cj)

µm, λ(~sj) =

j∑
i=1

νsi +
∑

m∈C(~sj)

λm,

and XDBMA is the set of states (~cn, ~sk) such that sj /∈ S(~cn), j = 1, . . . , k and ci /∈ C(~sk), i = 1, . . . , n.

Moyal, Bušić, and Mairesse show reversibility and a product-form stationary distribution for a FCFM
matching model with a General (not necessarily bipartite) Matching (GM) graph, and with sequential
individual (non-paired) arrivals, under a given stability condition [41]. For this model, instead of jobs and
servers we have “agents” of J different classes, with agent classes corresponding to nodes in the compatibility
graph; the set of agent classes compatible with class c, S(c), is its set of neighbors in the compatibility graph.
The set of valid states, CGM , are those states ~cn such that ci /∈ S(~cn), i = 1, . . . , n. Among the arrival
processes Moyal et al. consider is i.i.d. arrivals where the probability of a class-c arrival is µc. Given the
classes of unmatched agents ordered by their arrival times, ~cn, let µ(~cn) be the probability the next arrival
is compatible with one of those agents. Again, µ(~cn) satisfies the OI conditions (now in discrete time), so
the stationary distribution for the GM model, assuming stability, is

πGM (~cn) = πGM (∅)
n∏
i=1

µci
µ(~ci)

=
µcn
µ(~cn)

π(~cn−1) for ~cn ∈ C.

Caldentey, Kaplan, and Weiss [19] introduced the Infinite Bipartite Matching model in which there is an
infinite sequence of jobs and servers, and where the job is type i and the server is type j independently and
with respective probabilities λi/λ and µi/µ. Adan and Weiss develop a Markov chain model for the matching
sequence and show it satisfies partial balance and has a product-form stationary distribution, assuming the
appropriate stability condition [2]. Adan et al. show that there exists a unique FCFM (first-come first-
matched) matching for this model, and that the process is reversible under an “exchange transformation”
that interchanges matching servers and customers [6].
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Figure 5: An example of a nested system.

4 Nested Systems and Response Time Distributions

In the previous section we developed product forms for the stationary distributions of the detailed states for
variants of OI queues, but these product forms do not readily yield other important performance measures,
such as response time distributions. It turns out that we will get simple, elegant results for response times in
the collaborative model for a particular system structure called a nested system (see Figure 5 for an example).
As noted in Observation 3.11, conditioned on the set of busy servers the noncollaborative queue state has
the same sample-path evolution as the collaborative system state for a system with only the busy servers
available. A consequence of this result is that our results for collaborative response times (Section 4.1) carry
over to noncollaborative queueing times (Section 4.2).

Formally, a nested system is one in which, for any two job classes i 6= j, the sets of servers with which
they are compatible, Si and Sj , are such that Si ⊂ Sj or Sj ⊂ Si or Si ∩ Sj = ∅. This means that nested
systems can be recursively defined, starting with their most flexible job class, as follows.

All nested systems have a most flexible job class, J , that is compatible with all the servers in the system,
and if we remove class J from the system it decomposes into two or more nonoverlapping nested subsystems,
each with its own fully flexible job class. These in turn can be decomposed by removing the fully flexible
class until we get down to systems consisting of single job classes. Figure 5 shows an example of a nested
system; if the fully flexible class 6 is removed, the system decomposes into one nested system consisting of
servers 1 and 2 and job classes 1 and 2, and another nested system consisting of servers 3, 4, and 5 and job
classes 3, 4, and 5.

We begin our response time derivations with the collaborative model, and first determine the response
time of a class that is fully flexible, which, as we will see, has an exponential distribution. The derivation for
the fully flexible class does not require the system to be nested, but later it will help us to develop general
response times in nested systems. We note that the results for nested systems were first derived by Gardner
et al. [27] using an alternative state descriptor specific to nested systems; here we provide a new derivation
that follows directly from the detailed states used in Section 3.

4.1 Collaborative Model

4.1.1 Fully flexible class

In this section we will show that the fully flexible class-J jobs experience the steady-state collaborative
system as if it were a multiclass M/M/1 FCFS queue with total arrival rate λ, service rate µ, and class J
arrival rate λJ . The basic intuition is that while a class-J job is in the system all servers are busy, and
class-J jobs leave in the order of arrival. Note that the class-J response time in such a multiclass M/M/1
queue is stochastically the same as if they were the only jobs in an M/M/1 queue with effective service rate

µ̂J = µ −
∑J−1
i=1 λi = µ − (λ − λJ). That is, their response time is exponential with rate µ̂J − λJ = µ − λ.

Also observe that while there is a flexible class-J job in the system, or, more generally, while all the servers
are busy, the queue “behind” the class-J job, or behind the set of jobs that make all the servers busy,
operates as a multiclass M/M/1 queue. Cardinaels, Borst, and van Leeuwaarden [20] have shown that under
the stability condition in heavy traffic, the collaborative system with an arbitrary bipartite compatibility
matching converges to an M/M/1 multiclass queue for all classes.
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We outline the argument for our result for the class-J job here, before describing the details. The response
time result will follow from distributional Little’s law [15] if we can show that the number of class-J jobs in
steady state is the same as in an M/M/1 queue with arrival rate λJ and service rate µ̂J , (as in a multiclass
M/M/1 queue) i.e., it is geometric with probability 1− ρJ = 1− λJ/µ̂J . We show this by first conditioning
on there being at least one class-J job in the system, and showing that the conditional total number of jobs
following the first class-J job is geometric with probability 1− λ/µ, from which it follows that the number
of class-J jobs after the first class-J job is geometric with probability 1− ρJ = λJ/µ̂J . We then show that
the probability of at least one class-J job is ρJ , so the unconditional number of class-J jobs is also geometric
with probability 1− ρJ . We also argue that the queue state “seen” by the first class-J job given there is one
has the same distribution as the steady-state distribution of a system in which the class J job is removed.
This in turn implies that the class-J effective service rate, i.e., the time from which it is the first class-J job
until it leaves the system, is exponential with rate µ̂.

Let C = {~cn, n = 0, 1, ...} be the set of all states ~cn for the original collaborative model, and let ~C be a

random variable representing the state of the collaborative system in steady state, i.e., ~C ∼ π. We use the
subscript −i to represent a reduced system without class i, i = 1, ..., J . From Corollary 3.7, we have that
for ~cn ∈ C−i,

P{~C = ~cn|~C ∈ C−i} = πC−i(~cn) = πC−i(∅)
n∏
i=1

λci
µ(~ci)

,

where πC−i(∅) = πC(∅)/P{~C ∈ C−i}.
Suppose there is one class, call it class J , that is fully flexible in the bipartite compatibility matching,

i.e., SJ = {1, . . . ,M}. We condition on there being at least one class-J job in the system, ~C ∈ C\C−J , so we
know all servers will be busy. A possible state is (~cn, J,~am) where the first class-J job is in position n + 1,
~cn ∈ C−J represents the classes of jobs ahead of the first class-J job in order of arrival, and ~am ∈ C represents
the classes of jobs after the first class-J job in order of arrival. Then, because the denominator for all the
terms corresponding to the first class-J job and the jobs after it is the total service rate µ, we have

πC(~cn, J,~am) = πC(∅)
n∏
i=1

λci
µ(~ci)

λJ
µ

m∏
k=1

λak
µ
.

Let ~Cbefore be the conditional state of the jobs before the first class-J job, given there is such a job. Then,
for ~cn ∈ C−J ,

P{~Cbefore = ~cn} =

πC(∅)
n∏
i=1

λci

µ(~ci)

(
λJ

µ

∑
m,~am∈C

m∏
k=1

λak

µ

)
(
λJ

µ

∑
m,~am∈C

m∏
k=1

λak

µ

)∑
j,~cj∈C−J

πC(∅)
n∏
i=1

λci

µ(~ci)

=
πC(∅)

P{~C ∈ C−J}

n∏
i=1

λci
µ(~ci)

= πC−J(~cn).

That is, the first class-J job “sees” the steady-state distribution for the collaborative model with class J
removed. Similarly, letting ~Cafter be the conditional state for the jobs after the first class-J job, given there
is one, we have

P{~Cafter = ~am} = G

m∏
k=1

λak
µ
,

where the normalizing constant is

G =

 ∑
m,~am∈C

m∏
k=1

λak
µ

−1 =

( ∞∑
m=0

m∏
k=1

J∑
i=1

λi
µ

)−1
=

( ∞∑
m=0

λ

µ

m
)−1

= 1− ρ

with ρ = λ
µ . Also, given there is at least once class-J job, ~Cbefore and ~Cafter are independent. Finally,
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letting NJ be the total number of class-J jobs in the system in steady state, we have

P{NJ ≥ 1} =
λJ
µ

∑
j,~cj∈C−J

πC(∅)
n∏
i=1

λci
µ(~ci)

∑
m,~am∈C

m∏
k=1

λak
µ

=
λJ
µ
P{NJ = 0} 1

1− ρ
.

Solving for P{NJ ≥ 1} = 1− P{NJ = 0}, we obtain P{NJ = 0} = ρJ where ρJ = λJ

µ−(λ−λJ )
.

Note that P{~Cafter = ~am} is the same as the probability of state ~am in a multiclass M/M/1 queue with

service rate µ. Let N̂ be total number of jobs after the first class-J job in steady state. From standard results
for the M/M/1 queue, we have that N̂ ∼ geom(1 − ρ), where Y ∼ geom(p) means P{Y = n} = p(1 − p)n,
n = 0, 1, .... We can also obtain this result by summing the product form result above: P{N̂ = n} =∑
~an∈C P{~Cafter = ~an}. Each of the N̂ jobs is independently class i with probability λi/λ, so N̂J , the

number of class-J jobs after the first class-J job, is also geometrically distributed, N̂J ∼ geom(1 − ρJ).
More generally, N̂ i, the number of class-i jobs after the first class-J job has a geometric distribution,
N̂ i ∼ geom(1− λi

µ−λ+λi
). This is a consequence of the following simple lemma regarding Bernoulli splitting

of geometric random variables, with p = ρ = λ/µ and qi = λi/µ; we include the proof for completeness.

Lemma 4.1. Let Y ∼ geom(1 − p), i.e., Y is the number of failures before the first success in i.i.d.
Bernoulli trials with failure probability p. Let Yi be the number of type-i failures before the first success
in i.i.d. Bernoulli trials with success probability 1 − p and type-i failure probability qi, with

∑
qi = p, so

Yi|Y ∼ Binomial(Y, qi/p). Then Yi ∼ geom(1− qi/(qi + 1− p)).

Proof. When we are counting the number of type-i failures before the first success, we can ignore the other
types of failures. That is, we can just look at the trials that result in either type-i failures or success.
Conditioned on the trial being either a success or a type-i failure, the probability that it is a type-i failure
is qi/(qi + 1− p).

Because NJ = I{NJ > 0}(N̂J +1), and N̂J ∼ geom(1−ρJ), and, as we showed above, P{NJ = 0} = ρJ ,
we have the following.

Corollary 4.2. NJ ∼ geom(1− ρJ).

Summarizing our observations so far, we have the following.

Theorem 4.3. For the collaborative model with a fully flexible job class J ,

(i) The steady-state distribution for the system conditioned on there being no class-J job is the same as that
of a reduced system where there are no class-J jobs, πC−J .

(ii) The distribution of the state of the system ahead of the first class-J job given there is one is also πC−J .

(iii) The distribution of the state of the system after the first class-J job given there is one is the same as
the distribution of a multiclass M/M/1 queue with arrival rate λ and service rate µ.

(iv) The number of class-J jobs in the system in steady state, NJ , satisfies NJ ∼ geom(1− ρJ), i.e., it is
the same as in an M/M/1 queue with arrival rate λJ and service rate µ̂J = µ− (λ− λJ).

Let T i be the response time (total time in system) for a class-i job in steady state for our collaborative
model, and let TM/M/1(λ, µ) be the steady-state response time of a job in a standard M/M/1 queue with
arrival rate λ and service rate µ, i.e., TM/M/1(λ, µ) is exponentially distributed with rate µ − λ as long as

λ < µ. Let T iQ and T
M/M/1
Q (λ, µ) be similarly defined for steady-state time in queue, so T

M/M/1
Q (λ, µ) ∼

I · Exp(µ− λ), where I ∼ Bernoulli(λ/µ).

Corollary 4.4. For the collaborative model with a fully flexible job class J ,

(i) πC(∅) = πC−J(∅)(1− ρJ),
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(ii) T J ∼ TM/M/1(λJ , µ̂J) ∼ TM/M/1(λ, µ), and T JQ ∼ T
M/M/1
Q (λJ , µ̂J).

Proof. (i) From (i) and (iv) of Theorem 4.3 we have πC−J(∅) = πC(∅)/P{NJ = 0} = πC(∅)/(1− ρJ).
(ii) Distributional Little’s law [15] tells us that, for any λa and L, if the number of jobs in a queueing

system is geometrically distributed with mean L, jobs arrive at rate λa, and jobs are served in FCFS order,
then the response time is exponentially distributed with mean L/λa [36]. The result follows from (iv) of
Theorem 4.3 with arrival rate λa = λJ and mean number in system L = ρJ

1−ρJ = λJ

(µ−(λ−λJ ))−λJ
= λJ

µ−λ . Thus,

the queueing system for class-J jobs in steady state is stochastically indistinguishable from a single-class
M/M/1 queue with only class-J jobs and with effective service rate µ̂J = µ− (λ− λJ).

Our results for a fully flexible class in the collaborative model can be extended to general OI queues.
Suppose we have an OI queue, so the service rate as a function of the ordered list of job classes, µ(~cn),
satisfies conditions (i)-(iii) of Section 3.1, and suppose there is a maximal service rate µ, such that µ(~cn) ≤ µ
for any state ~cn. Also suppose there is a job class J such that for any state ~cn in which the first class-J job
is in position k, k ≤ n, µ(~cn) = µ(~ck) = µ. Then a class-J job will “block” jobs behind it in the OI queue in
the same way a fully flexible job blocks jobs behind it in the skill-based collaborative queue, and Theorem
4.3 and Corollary 4.4 still hold.

4.1.2 Other classes in nested systems

Note that jobs of classes other than J will be blocked by class-J jobs in the collaborative system. Their
response time therefore decomposes into an initial time to clear any class J jobs plus their response time in a
subsystem in which there are no class J jobs. We use this observation to specify response time distributions
for all job classes in this section.

Recall that a nested system has a fully flexible job class, J , and if class J is removed, it decomposes
into two or more nonoverlapping nested subsystems. Thus, each job class i, by removing job classes j such
that Si ⊂ Sj or Si ∩ Sj = ∅, defines a nested subsystem with servers Si and job classes j that require

servers Sj ⊆ Si, and where class i is fully flexible. That is, for a subset S of servers, let R(S) = C(S) =
{1, . . . , J}\C({1, . . . ,M}\S) be the job classes that require (i.e., that are only compatible with) servers in
S. The nested subsystem defined by job class i consists of servers k ∈ Si and job classes j ∈ R(Si), i.e.,
the reduced system ` {1, ...,M}\Si. Let µ̂i = µ(Si) − λ(R(Si)) + λi be the effective service capacity for
class i in this subsystem, and let ρi = λi/µ̂i. We will show that the overall response time for class-i jobs
is the sum of the queueing times for classes j with Si ⊂ Sj , plus the response time for class i given those
classes are gone (so it is the most flexible class in its subsystem). Note that, as we observed for class J ,
TM/M/1(λi, µ̂i) ∼ TM/M/1(λ(R(Si)), µ(Si)).

Theorem 4.5. In a nested collaborative system, for any job class i,

T i ∼ TM/M/1(λi, µ̂i) +
∑

j:Si⊂Sj

T
M/M/1
Q (λj , µ̂j),

where all the terms are independent. Also, πC(∅) =
J∏
j=1

(1− ρj).

Proof. We start with the response time result. Let class G be fully redundant in one of the subsystems
obtained when class J is removed. That is, G is such that Sj ⊂ SG or Sj ∩ SG = ∅ for all j 6= G, J . We will
show that TG ∼ T JQ(λJ , µ̂J) + TM/M/1(λG, µ̂G). The result will follow by repeating the argument.

From PASTA and (iv) of Theorem 4.3, an arriving (tagged) class-G job in steady state will “see” NJ

class-J jobs in the system, and it will not be able to start service until all of those NJ class-J jobs have left
the system. That is, the time the tagged job must wait until the system is empty of any class-J jobs it finds
on arrival is the same as the queueing time for a class-J job

T JQ ∼ T
M/M/1
Q (λJ , µ̂J).

Once there are no class-J jobs, from (i) of Theorem 4.3, the tagged class-G job will “see” the reduced system
in steady state, with distribution πC−J . That is, it will see independent subsystems defined by the fully
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flexible class in each. The subsystems that do not include class G will have no effect on our tagged job.
Hence, applying Corollary 4.4 to the subsystem with G instead of J as the most flexible class, we have that
the class-G response time once there are no class-J jobs is TG|NJ = 0 ∼ TM/M/1(λG, µ̂G), and the overall
response time result follows.

From our earlier observations, πC−J(∅) = πC(∅)/P{~C ∈ C−J} = πC(∅)/P{NJ = 0} = πC(∅)/(1− ρJ), so
πC(∅) = (1−ρJ)πC−J(∅). If there are no class J jobs, the system decomposes into K independent subsystems,
each with its own fully flexible class, Gk, k = 1, ...,K, so

πC−J(∅) =

K∏
k=1

πC−(J,Gk)
(∅) =

K∏
k=1

(1− ρGk
)πC−J(∅).

Repeating the argument within each subsystem we get πC(∅) =
J∏
i=1

(1− ρi).

As an example, consider the W model in which class-i jobs can only be served by server i, i = 1, 2, and
class-3 jobs can be served by either server. Then

T 3 ∼ TM/M/1(λ3, µ− λ1 − λ2) and T i ∼ TM/M/1
Q (λ3, µ− λ1 − λ2) + TM/M/1(λi, µi), i = 1, 2.

4.1.3 Matching rates and effective service times

We now consider the matching rates and effective service times for each job class i. We define the effective
service time of a (tagged) class-i job, Sieff , as the time from which it first has no class-i or higher jobs ahead
of it until it completes service, in steady state. The matching probability pij is the probability a class i job is
served by server j in steady state. The corresponding matching rate is λipij . Though, in general, matching
probabilities and rates are difficult to determine (see, e.g., [2] for a discussion of the difficulties), for nested
systems the problem is tractable.

Let us first consider the fully flexible class J , and its effective service time, SJeff , where T J = T JQ +SJeff .

From Corollary 4.4, T J ∼ TM/M/1(λJ , µ̂J) and T JQ ∼ T
M/M/1
Q (λJ , µ̂J), and therefore, Seff ∼ Exp(µ̂J),

where µ̂J = µ − λ + λJ . Another way to see this is to notice that at the time an effective service period
starts, the system the tagged class-J job sees will decompose into K independent subsystems, each with
its own fully flexible class, Gk, k = 1, ...,K, and the tagged job will join each of those subsystems as a
fully flexible job for the subsystem (viewing the collaborative model as a cancel-on-completion redundancy
system). From Corollary 4.4 applied to Gk in subsystem k, the response time of the fully flexible class within
the subsystem will have the same distribution as the response time in the corresponding M/M/1 queue, so

SJeff = min
k=1,...,K

{TM/M/1(λGk
, µ(SGk

)− (λ(R(SGk
))− λGk

)}

= min
k=1,...,K

{Exp(µ(SGk
)− (λ(R(SGk

)))} ∼ Exp(µ− (λ− λJ)),

using the fact that the minimum of exponentials is exponentially distributed with additive rate.
Now consider the matching probabilities for class J . The probability that a tagged class-J job will be

served on a server in SGl
is

P{TM/M/1(λGl
, µ(SGl

)− (λ(R(SGl
))− λGl

) = min
k=1,...,K

{TM/M/1(λGk
, µ(SGk

)− (λ(R(SGk
))− λGk

)}

=
µ(SGl

)− (λ(R(SGl
))∑

k[µ(SGk
)− λ(R(SGk

))]
=
µ(SGl

)− λ(R(SGl
))

µ− (λ− λJ)
.

The argument can be applied recursively for any class. The effective service time of class i is its effective
service time in the subsytem in which class i is fully flexible, so Sieff ∼ Exp(µ̂i). Similarly, letting Gik,

k = 1, ...Ki, be the independent nested subsystems that result when class i and all more flexible job classes
are removed, the probability that a tagged class-i job will be served on a server in SGk

l
is

µ(SGk
l
)− λ(R(SGk

l
))

µ(Si)− (λR((Si))− λi)
.
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Let i1, ..., il = i be defined as the sequence of fully flexible classes in each of the nested subsystems of class
i that use server j. That is, i1 is such that j ∈ Si1 and there is no class k such that Sk ⊂ Si1 , and, for
m = 2, ..., l, im is such that Sim−1

⊂ Sim and Sk * Sim for all k 6= i1, ..., im−1. Then, from the argument
above, we have the following.

Proposition 4.6. In the collaborative nested system, for any class i, the effective service rate is Sieff ∼
Exp(µ̂i) and the matching probability of class i to server j is

pij =
µj

µ(Si1)

l∏
k=2

µ(Sik−1
)− λ(R(Sik−1

))

µ(Sik)− (λR((Sik))− λik)
.

The corresponding matching rate is λij = λipij.

For the example of Figure 5, S6
eff ∼ Exp(µ−λ+λ6) = min{Exp(µ1 +µ2−λ1−λ2),Exp(µ3 +µ4 +µ5−

λ3 − λ4 − λ5)}, and

p61 =
µ1

µ1

µ1 − λ1
µ1 − λ1 + µ2

µ1 + µ2 − λ1 − λ2
µ− λ+ λ6

.

4.2 Noncollaborative Model

Let T iQ|B be the stationary time in the job queue for a class-i job in the noncollaborative model, given that

the set of busy servers is B = {1, ...,M} (i.e., all servers are busy). Then, from Observation 3.11, we know
T iQ|B has the same distribution as the response time for class-i jobs in the collaborative model. Therefore,
from Theorem 4.5, we have

Theorem 4.7. In a nested noncollaborative system, for any job class i, given busy servers B = {1, ...,M},

T iQ|B ∼ T
M/M/1(λi, µ̂i) +

∑
j:Si⊂Sj

T
M/M/1
Q (λj , µ̂j),

where µ̂j = µ(Sj)− λ(R(Sj)) + λj and all the terms are independent.

The result can be generalized for class i, if some servers are idle but all the servers in Si are busy, as
follows. Fix i and the set of busy servers B ⊇ Si, and let y be such that Si ⊆ Sy ⊆ B and @j 6= y such
that Sy ⊂ Sj ⊆ B. That is, class y determines a nested subsystem of busy servers in which class y is fully
flexible, and there are no jobs of class j such that Sy ⊂ Sj in the job queue. Therefore, an arriving class-i
job sees a reduced system, ` {1, ...,M}\Sy, consisting only of the servers in Sy and job classes j ∈ R(Sy),
and in which all the servers in Sy are busy. We have the following.

Corollary 4.8. In a nested noncollaborative system, for any job class i, given the servers in B ⊇ Si are
busy,

T iQ|B ∼ T
M/M/1(λi, µ̂i) +

∑
j:Si⊂Sj⊆Sy

T
M/M/1
Q (λj , µ̂j),

where µ̂j = µ(Sj)− λ(R(Sj)) + λj and all the terms are independent.

From Proposition 4.6 we also have the following.

Corollary 4.9. In a nested noncollaborative system, for any job class i, given the servers in B ⊇ Si are
busy, the conditional response time satisfies

T iB ∼ TM/M/1(λi, µ̂i) +
∑

j:Si⊂Sj⊆Sy

T
M/M/1
Q (λj , µ̂j) + IikExp(µj),

where Iik is Bernoulli with probability equal to the matching probability for type-i jobs to server k, pik, given
in Proposition 4.6, and all the terms are independent.
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Finally, we can obtain unconditional response time distributions for the special case in which the service
rate is the same at all servers; that is, µj = µ/M for all servers j = 1, . . . ,M . We do this by conditioning
on the set of busy servers seen by an arriving job. If an arriving class-i job finds an idle compatible server,
it will immediately enter service; otherwise it must wait in the job queue before entering service. Define
y1, y2, ...yl such that Si = Sy1 ⊂ Sy2 ⊂ ... ⊂ Syl = {1, ...,M} and such that for all j 6= y1, ..., yl, Sj ⊂ Si or
Si ∩ Sj = ∅. Thus, classes yi define the nested subsystems containing Si. Let I(Syk) be the indicator that
all the servers in Syk are busy, but not all the servers in Syk+1

\Syk are busy. Then we have the following,
where T i is the (unconditional) class-i response time.

Corollary 4.10. In a nested noncollaborative system with homogeneous service rates, for any job class i,

T i ∼ Exp(µ/M) +

l∑
k=1

I(Syk)

(
TM/M/1(λi, µ̂i) +

k∑
i=1

T
M/M/1
Q (λyi , µ̂yi)

)
,

where µ̂j = µ|Sj |/M − λ(R(Sj)) + λj and all the terms are independent.

It is a challenge to get more complete response time results for the noncollaborative model. First, for
a job that finds multiple compatible servers idle, if service rates are heterogeneous, we need to further
condition on the server on which the job runs. Under RAIS this is determined probabilistically according to
the assignment rule; the probabilities can be determined using the process described in [45]. Under ALIS
this is determined by which server has been busy longer. Second, for a job that finds all compatible servers
busy we still need to determine the server on which the job ultimately runs. This is the probability that a
class-i job completes on server j in the collaborative model, i.e., the matching probability; this would then
be equal to the probability that a class-J job runs on server i in the noncollaborative model.

A final challenge in the NC model is computing the probability that various subsets of servers are busy.
These computations are aided by the use of Corollary 3.4 and the simple form of πC(∅) for nested systems,
but are still complicated. Though the analysis is tractable in certain small nested systems, for example, in
the W model, the form of these probabilities is not particularly clean or intuitive. In larger nested systems,
we believe that the probabilities needed to perform the requisite conditioning are unlikely to have a clean
closed form solution, even for a symmetric nested system.

5 Partial State Aggregation and Conditional Queueing Times

Section 4 provides one approach for understanding the form of the per-class response time distributions in
nested systems. In this section, we turn to a second approach that uses an alternative, partially aggregated,
state description, which gives us conditional queueing times, given the busy servers in the order of the jobs
they are serving, for general, possibly non-nested, systems. Like the detailed states considered in Section 3,
the partially aggregated states also provide a Markov description for the model and also yield a product
form stationary distribution.

5.1 Noncollaborative Model

Instead of tracking the classes of all jobs in the system, we now track the number of jobs in the queue in
between jobs in service, but not their individual classes. Let l denote the number of jobs currently in service.
The partially aggregated state includes the vector ~nl = (n1, . . . , nl), where ni denotes the number of jobs
in the queue (not in service) that arrived after the ith job in service and before the (i+ 1)st job in service.
Under both ALIS and RAIS, we track the busy servers in the arrival order of the jobs they are serving, (but
not the classes of the jobs in service); for the ALIS version we also track the idle servers in the order in
which they became idle.

The partially aggregated state description for noncollaborative models was first introduced by Adan,
Visschers, and Weiss [1, 45]. In these papers, the stationary distribution was derived directly using partial
balance for the partially aggregated states. In this section we provide an alternative derivation that involves
aggregating the stationary probabilities for the detailed states discussed in Section 3.

Let us first consider the noncollaborative model with the RAIS policy, in which arrivals finding multiple
idle compatible servers are assigned to a server at random with appropriate probabilities that depend on the
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set of busy servers. The partially aggregated state is (~bl, ~nl), where l is the number of busy servers (which

in the noncollaborative model is the same as the number of jobs in service), ~bl is the set of busy servers in
order of the arrival times of the jobs they are serving, and ni, i = 1, ..., l is the number of jobs waiting for
one of busy servers 1, . . . , l. Thus, server b1 is serving the oldest job, the next n1 jobs to have arrived are
waiting for (require) server b1, i.e., their classes are in R(b1), the n1 + 2nd oldest job is being served by b2,

the next n2 jobs are only compatible with b1 or b2 or both, i.e. their classes are in R(~b2), and so on. The

corresponding detailed state, ~zm, is such that z1 = b1, zn1+2 = b2, etc., and m = l +
∑l
i=1 ni. Thus, in the

partially aggregated state (~bl, ~nl) there are l jobs in service and
∑l
i=1 ni jobs in the queue. When the set

of busy servers is ~bj , let λas(~bj) represent the activation rate of idle server s /∈ {b1, ..., bj} (the rate of going

from state (~bj , ~nj) to ((~bj , s), (~nj , 0)).
With this description of the state we defer determining the class of a job until we need it. That is, we

realize information about a job’s class only when a server becomes available and the job under consideration
is next in the queue behind the available server. At this point, we probabilistically determine whether or
not the job is compatible with the server; if it is compatible, it enters service. If not, the server “skips over”
the job and we have narrowed down the set of possible classes for the job, but we may have not specified its
exact class.

Visschers et al. found that the above state space exhibits a product form stationary distribution, under

the assignment condition for routing a compatible job to idle server bj given busy servers ~bj−1:
l∏

j=1

λabj (~bj−1)

must be the same for any permutation of b1, . . . , bl. This is the same assignment condition that we use in
Section 3 for the detailed state description.

Let α(~bj) =
λ(R(~bj))

µ(~bj)
. We use the notation πRAIS

′
to denote the partially aggregated stationary distribu-

tion under RAIS (in contrast with πRAIS , which denotes the stationary distribution for the detailed state
description).

Theorem 5.1. (Visschers et al. [45])

πRAIS
′
(~bl, ~nl) = πRAIS(∅)

l∏
j=1

λabj (~bj−1)

µ(~bj)
α(~bj)

nj = πRAIS(∅)
l∏

j=1

α(~bj)
nj

l∏
j=1

λabj (~bj−1)

µ(~bj)

= πRAIS(~nl~|bl)π
RAIS(~bl) =

l∏
j=1

(1− α(~bj))α(~bj)
njπRAIS(~bl).

The proof given by Visschers et al. involves showing directly that local balance holds for the partially
aggregated states. Below we give an alternative proof, which follows by summing the stationary probabilities
(given in Theorem 3.10) of states ~zm that are consistent with (~bl, ~nl).

Proof. We begin by recalling that ~zm is an interleaving of states ~cn and ~bl, where m = n+ l.
That is, letting ki =

∑i
j=1 nj , we can write

~zm = (b1, c1, . . . , cn1 , b2, . . . , bj , ckj+1, . . . , ckj−1+nj , bj+1, . . . , bl, ckl−1+1, . . . , ckl−1+nl
).
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Let C(~bl, ~nl) denote the set of states ~zm compatible with (~bl, ~nl). We then have

πRAIS
′
(~bl, ~nl) =

∑
~zm∈C(~bl,~nl)

πRAIS(~zm)

= πRAIS(∅)
∑

~zm∈C(~bl,~nl)

m∏
i=1

λzi (~zi)

µ(~zi)

= πRAIS(∅)
∑

~zm∈C(~bl,~nl)

l∏
j=1

λabj (~bj−1)

µ(~bj)

kj−1+nj∏
i=kj−1+1

λci

µ(~bj)


= πRAIS(∅)

l∏
j=1

λabj (~bj−1)

µ(~bj)

kj−1+nj∏
i=kj−1+1

∑
c∈R(~bj)

λc

µ(~bj)


= πRAIS(∅)

l∏
j=1

(
λabj (~bj−1)

µ(~bj)

(
λ(R(~bj))

µ(~bj)

)nj
)

= πRAIS(∅)
l∏

j=1

α(~bj)
nj

l∏
j=1

λbaj (~bj−1)

µ(~bj)
.

We now turn to the ALIS policy, in which arrivals finding multiple idle compatible servers are assigned
to the one that has been idle longest. Because the order of the idle servers now affects the system evolution,
we now consider the aggregate state (~sM−l,~bl, ~nl), where ~sM−l is the set of M − l idle servers in the order

in which they became idle, and ~bl and ~nl are defined as in the RAIS model. Again we have a product form
for the partially aggregated state description.

Theorem 5.2. (Adan and Weiss [1])

πALIS
′
(~sM−l,~bl, ~nl) = GALIS

′
l∏

j=1

α(~bj)
nj

l∏
j=1

1

µ(~bj)

M−l∏
j=1

1

λ(~sj)

where GALIS
′

is a normalizing constant.

As noted by Adan and Weiss [1], aggregating the stationary distribution under ALIS over all permutations
of the idle servers, ~sk, yields the same stationary distribution as under RAIS.

Corollary 5.3.
∑
P(~sM−l)

πALIS
′
(~sM−l,~bl, ~nl) = πRAIS

′
(~bl, ~nl).

Corollary 5.3 tells us that the conditional stationary distribution of the time in queue, given the set of
busy servers, is the same under ALIS as under RAIS. Under both policies, conditioned on ~bl, the number
of jobs waiting in the queue between busy servers bj and bj+1 is geometrically distributed with parameter

1 − α(R(~bj)) = 1 − λ(R(~bj))/µ(~bj), from Theorem 5.1. Moreover, each of these jobs is of class c with

probability λc/λ(R(~bj)). Therefore, from Lemma 4.1, conditioned on ~bl, the number of class-i jobs waiting in
the queue between busy servers bj and bj+1 is geometrically distributed with parameter 1− λi

µ(~bj)−λ(R(~bj))+λi
.

Hence, from distributional Little’s law, and because class-i jobs are served in order, the time a class-i job
will spend in the “subsystem” behind the servers ~bj is the same as the response time for a standard M/M/1

queue with arrival rate λi and service rate µ(~bj)−λ(R(~bj))+λi. Therefore, depending on ~bl, a job arriving in
steady state will either start service immediately, or wait a sum of exponential times before entering service.

Theorem 5.4. The queueing time for a class i job, given busy servers ~bl, is

T iQ(~bl) = I(i ∈ R(~bl))

l∑
j=f(i,~bl)

TM/M/1(λi, µ(~bj)− λ(R(~bj)) + λi)
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where I(·) is the indicator function, and f(i,~bl) = arg min{j : 0 ≤ j ≤ l, i ∈ R(~bj)} = arg max{j : 0 ≤ j ≤
l, bj ∈ S(i)} is the largest indexed busy machine that is compatible with job class i.

We note that, unlike the results for nested systems derived in Section 4, here the per-class queueing time
distribution is conditioned on the ordered vector of busy servers. In general it is not straightforward to
obtain closed-form expressions for the probability that a job sees a particular ~bl. Hence, while this form is
insightful in terms of interpreting the time in queue as that in a tandem series of M/M/1 queues, the form
does not permit an easy derivation of mean time in queue or other exact performance metrics.

5.2 Collaborative Model

In this section we note briefly that a similar partially aggregated state can be defined for the collaborative
model. Here the partially aggregated state description is (~dl, ~nl), where ~dl gives the classes of all jobs
currently in service, and ~nl gives the number of jobs in the queue (receiving no service) in between those

jobs in service. This is similar to the (~bl, ~nl) state used for RAIS, except that now we track the classes of the

job in service rather than the servers processing these jobs. We define µ(~di) as the total service rate given

to the first i jobs that are receiving service, and R(~di) as the classes of jobs that require one of the servers

serving the jobs in ~di. That is, c ∈ R(~di) if Sc ∈ S(~di). Note that for di to be in service, given ~di−1, we

must have di /∈ ~di−1. Let α(~di) = λ(R(~di))

µ(~di)
. We use the superscript C ′ to denote the partially aggregated

stationary distribution in the collaborative system.

Proposition 5.5. For l = 0, . . . ,M , ~dl such that di /∈ ~di−1 for i = 2, . . . , l, and ni = 0, 1, . . . for i = 1, . . . , l,

πC
′
(~dl, ~nl) = πC (∅)

l∏
j=1

λdj

µ(~dj)
α(~dj)

nj .

The proof follows a similar argument to the proof of Theorem 5.1 by aggregating detailed states consistent
with (~dl, ~nl); we omit the details.

As an example, consider the N model, in which class 1 jobs can only be served by server 1 and class
2 jobs can be served on either server. Then α(1) = λ1

µ1
, α(2) = α(1, 2) = λ

µ , and, from Theorem 4.5,

πC(∅) = (1− λ1

µ1
)(1− λ2

µ−λ1
), so we have the following corollary.

Corollary 5.6. For the N model, πC
′
(∅) = (1− λ1

µ1
)(1− λ2

µ−λ1
) and

πC
′
((1), n) =

(
1− λ1

µ1

)(
1− λ2

µ− λ1

)(
λ1
µ1

)n+1

πC
′
((2), n) =

(
1− λ1

µ1

)(
1− λ2

µ− λ1

)
λ2
µ

(
λ

µ

)n
πC
′
((1, 2), n1, n2) =

(
1− λ1

µ1

)(
1− λ2

µ− λ1

)(
λ1
µ1

)n1+1
λ2
µ

(
λ

µ

)n2

.

We can also aggregate for a collaborative model with abandonments, where jobs abandon after an expo-
nential time with rate γ, as summarized below.

Proposition 5.7. For l = 0, . . . ,M , ~dl such that di /∈ ~di−1 for i = 2, . . . , l, and ni = 0, 1, . . . for i = 1, . . . , l,

πC
′
(~dl, ~nl) = πC (∅)

l∏
j=1

λdj

µ(~dj) + γ(
∑j−1
i=1 ni + 1)

(
nj∏
k=1

λ(R(~dj))

µ(~dj) + γ(
∑j−1
i=1 ni + k)

)
.

Results similar to the proposition and corollary above were derived recently for the N model by directly
checking the balance equations for the aggregated states [21].

As for the noncollaborative system, we can use Proposition 5.5 and the distributional form of Little’s
Law to determine the distribution of T iQ(~dl), the conditional waiting time until a job starts service on at

least one server for any class i, given ~dl.
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Corollary 5.8.

T iQ(~dl) = I(i ∈ R(~dl))

l∑
j=f(i,~dl)

TM/M/1(λi, µ(~dj)− λ(R(~dj)) + λi)

where I(·) is the indicator function, and f(i, ~dl) = arg min{j : 0 ≤ j ≤ l, i ∈ R(~dj)} = arg max{j : 0 ≤ j ≤
l, S(dj) ∪ S(i) 6= ∅ is the largest indexed job in service that is using a server in Si.

Corollary 5.9. T iQ ∼
∑
l

∑
~dl
T iQ(~dl)I(~dl).

5.3 Collaborative Model: Alternative Partial Aggregation

For the collaborative model our detailed state was ~cn, listing the classes of all the jobs in the system (both
in service and waiting for service) in order of their arrival. In the partially aggregated states of Section 5.2,
we track the classes of the jobs in service, as well as the number of jobs in the queue in between those jobs
in service. We now consider an alternative partially aggregated state description, (~dm, ~nm), where m ≤ J is

the number of distinct classes of jobs in the system, ~dm is redefined to list those classes in order of arrival of
the first of each class, and ni gives the number of jobs between the first job of class di and the first job of
class di+1 (or after the first job of class m for i = m) [20, 46]. Therefore, n = m+

∑m
i=1 ni. For the example

of Figure 3, with ~cn = ~c6 = (1, 2, 3, 2, 4, 1), the corresponding aggregated state is (~dm, ~nm) = (~d4, ~n4) =

(1, 2, 3, 4; 0, 0, 1, 1). We call ~dm the class profile of the state. Because of the FCFS service discipline, only

jobs corresponding to the class profile ~dm can be in service (though these jobs are not necessarily in service,

because some of them may be blocked by earlier arrivals among ~dm). Also, given ~di, if a job of class c

is among the ni jobs immediately after the first class-di job, we must have c ∈ ~di. This aggregated state
description was introduced by Weiss [46] for the corresponding directed bipartite matching (DBM) model
described in Section 3.6.

The aggregated state (~dm, ~nm) still gives a Markov description of the system, but, as with the aggregated
states of Section 5.2, we defer determining the class of a job until we need it. That is, we realize information
about a job’s class, for a job among the ni jobs, only when one of the jobs corresponding to ~di completes.
For example, if a job of class di completes (necessarily the first class-di job in the system, for this model),
then we probabilistically determine whether the first of the ni jobs following it is class di (with probability

λdi/λ(~di)), in which case it becomes the new “first” job of class di and ni becomes ni − 1. Otherwise, that
job gets added to the ni−1 jobs after the first class-di−1 job, and we check the next job (if any) of the ni
jobs after the departing class di job, and so on.

Let C(~dm, ~nm) be the set of detailed states ~cn that are consistent with (~dm, ~nm), and let πC
′
(~dm, ~nm) be

the stationary distribution of the aggregated state description for the collaborative model. Then we have

πC
′
(~dm, ~nm) =

∑
~cn∈C(~dm,~nm)

πC(~cn) = πC(∅)
∑

~cn∈C(~dm,~nm)

n∏
i=1

λci
µ(~ci)

= πC(∅)
m∏
j=1

 λdj

µ(~dj)

∑
c∈~dj

λc

µ(~dj)

ni
 = πC (∅)

m∏
j=1

λdj

µ(~dj)

(
λ(~dj)

µ(~dj)

)nj

.

We therefore have the following, letting ρ(~dj) = λ(~dj)/µ(~dj).

Proposition 5.10. (Weiss [46]) For m = 0, . . . ,M , ~dm a permutation of a subset of {1, 2, ..., J}, and
ni = 0, 1, . . . for i = 1, . . . ,m,

πC
′
(~dm, ~nm) = πC (∅)

m∏
j=1

λdj

µ(~dj)
ρ(~dj)

nj ,

where πC
′
(∅) = πC(∅).
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Let ~D = (D1, ..., DK) be a random class profile in steady state, and let ~N = (N1, ..., NK) be the vector

counting jobs between the jobs in the class profile in steady state, i.e., ( ~D, ~N) ∼ πC′(~dm, ~nm). We have the
following corollary.

Corollary 5.11. Given ~D = ~dm, Ni ∼ geom(1 − ρ(~di)) and Ni and Nj are independent for i = 1, ...,m,
j 6= i. Also,

P ( ~D = ~dm) = πC (∅)
m∏
j=1

λdj

µ(~dj)− λ(~dj)
.

Therefore, πC (∅) =

[∑
~dm

m∏
j=1

λdj

µ(~dj)−λ(~dj)

]−1
.

Proof.

πC
′
(~dm, ~nm) = πC (∅)

m∏
j=1

λdj

µ(~dj)
ρ(~dj)

nj

= πC (∅)
m∏
j=1

λdj

µ(~dj)(1− ρ(~dj))
ρ(~dj)

nj (1− ρ(~dj))

= πC (∅)

 m∏
j=1

λdj

µ(~dj)− λ(~dj)

 m∏
j=1

ρ(~dj)
nj (1− ρ(~dj))


= P ( ~D = ~dm)P ( ~N = ~nm| ~D = ~dm).

Corollary 5.11 enables us to obtain a simple explicit form for mean performance metrics.

Corollary 5.12. The mean number of class-i jobs in the system, E[N i], is given by

E[N i] =
∑

~dm:i∈~dm

πC(∅)

 m∏
j=1

λdj

µ(~dj)− λ(~dj)

1 +

m∑
j=fd(i)

λi

µ(~dj)− λ(~dj)

 ,

where fd(i) = k such that dk = i, i.e., fd(i) is the position of class i in ~dm.

Proof. Let N i
j denote the number of class-i jobs among the nj jobs that appear in the queue between jobs

di and di+1. We have

E[N i] =
∑
m,~dm

E[N i| ~D = ~dm] · P ( ~D = ~dm)

=
∑

m,~dm:i∈~dm

πC(∅)

 m∏
j=1

λdj

µ(~dj)− λ(~dj)

1 +

m∑
j=fd(i)

E[N i
j | ~D = ~dm]


=

∑
~dm:i∈~dm

πC(∅)

 m∏
j=1

λdj

µ(~dj)− λ(~dj)

1 +

m∑
j=fd(i)

λi

µ(~dj)− λ(~dj)

 ,

where P ( ~D = ~dm) is given in Corollary 5.11 and E[N i
j | ~D = ~dm] follows from Lemma 4.1.

The per-class mean response times then follow from Little’s Law. While we have yet to solve for πC(∅),
in Section 6 we will see in Proposition 6.2 that Bonald et al. [17] provide a recursive approach to computing
πC(∅).

We note that the partial aggregation results for the collaborative model generalize easily to aggregate
both jobs and servers in the directed bipartite matching DBM(K) model where servers arrive and can wait
in a finite buffer.
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6 Per-class State Aggregation and Mean Performance Measures

In this section we consider class-based performance measures for the OI queue (and hence the collaborative
model, and for the queue of the noncollaborative model given all servers busy) with general, non-nested,
bipartite structures. Here it is useful to define the per-class aggregated state x = (x1, ..., xN ), where xi is
the total number of type i jobs. Let C(x) be set of states of the form ~cn that are consistent with x, i.e.,
~cn ∈ C(x) if and only if xi =

∑n
j=1 I{cj = i} for all classes i. so n =

∑
xi. Abusing notation, let µ(x) be

the total service rate in state x; from OI property (ii) (see Section 3), µ(x) = µ(~cn) for all states ~cn ∈ C(x).
Then πX(x) =

∑
~cn∈C(x) π(~c), where πX(x) is the steady-state probability of aggregate state x and, by

aggregating the partial balance equations, is given by

µ(x)πX(x) =
∑
i:xi>0

λiπ
X(x− ei),

where ei is a vector of appropriate length containing a 1 in position i and 0’s elsewhere. Then πX(x) also
has a product form. The result follows from summing the product form characterizations of πX(~c).

Theorem 6.1. (Bonald and Comte [16], Krzesinski [39])The aggregate steady-state distribution satisfies

πX(x) = πCX(∅)Φ(x)

N∏
i=1

λxi
i ,

where

Φ(x) =
1

µ(x)

∑
i:xi>0

Φ(x− ei), Φ(∅) = 1,

and πX(∅) = πC(∅) is a normalizing constant equal to the probability that the system is empty.

Note that the aggregate state description does not capture the dynamics of the OI queue and is not
a Markov description for the original system. While the order of the jobs, given x, does not matter for
the total service rate, µ(x), it does matter for the amount of service received by the j’th job in the queue,
∆j(~cj) = ∆j(~cn). We therefore need to know ~cn—or at least the class of the job in service on each server—to
know the rate out of the state due to a class-i departure.

As observed by Bonald and Comte, the stationary aggregate distribution πCX(x) given in Theorem 6.1 is
also the stationary distribution of a single-server system consisting of N job classes with Poisson arrivals at
rates λi and state-dependent exponential service rates such that class-i jobs are served according to processor
sharing at rate

φi(x) = [Φ(x− ei)/Φ(x)]I{xi > 0}.

We call the single-server model with service rates φi(x) the aggregate model. Bonald and Comte also noted
the following relationship between the aggregate model and the collaborative model:

φi(x) =
∑

~cn∈C(x)

πC(~cn)

πX(x)
µ′i(~cn),

where µ′i(~cn) is the service rate of the first class-i job in state ~cn in the collaborative model. (Because
of the FCFS service discipline, no other class-i jobs will be in service.) Note that from Theorem 6.1,∑
i φi(x) = µ(x).
The service rates φi(x) also satisfy the following balance property:

φi(x)φj(x− ei) = φj(x)φi(x− ej)

for xi, xj > 0. The balance property is analogous to the assignment condition required for the noncol-
laborative model with random assignment to idle servers to have a product-form stationary distribution.
Furthermore, the balance property leads to Kolmogorov’s criterion being satisfied, and therefore it leads to
the system being reversible. Because the aggregate model is reversible, it is also insensitive to the job size
distributions.
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While the stationary distribution of the states x is the same in the aggregate model and the collaborative
model, as noted above, the underlying system dynamics are very different. Bonald and Comte propose
applying a round robin-like scheduling algorithm to the original collaborative model to approximate the
behavior of the aggregate model [16]. Under their algorithm, server j serves the first compatible job in
the queue, as in the original, collaborative, FCFS model, but, after an exponential time with rate θj ,
server j interrupts the job in service and that job is moved to the back of the queue. This is analogous
to approximating processor sharing with round robin for a single server and job class. Bonald and Comte
note that the aggregate model, using balanced fair processor sharing, is insensitive in that the steady-state
distribution does not depend on the job size distribution.

Because the aggregate model and the collaborative model have the same steady-state distribution for the
aggregate states, we can use the aggregate model to efficiently compute aggregate performance measures for
the collaborative model. In particular, Bonald et al. [17] give a recursion based on successively removing
servers for computing the system idle probability, πC(∅) = πX(∅), as follows.

Let C be the set of all (detailed) states ~cn for the original collaborative model. Recall that the subscript
` k represents a reduced system without server k, i.e., in which server k as well as the job classes in Ck are
removed. Let ψk be the probability that server k is idle in the original collaborative system. Then, from
Corollary 3.8, we have that πC(~cn| server k is idle) = πC`k(~cn) for ~cn ∈ C`k, so πC(~cn) = πC`k(~cn)ψk. Then
πC(∅) = πX(∅) = πC`k(∅)ψk (and hence ψk) can be computed recursively:

Proposition 6.2. (Bonald et al. [17])

πC(∅) = πX(∅) = (1− ρ)
µ∑M

k=1
µk

πC
`k(∅)

,

where ρ = λ/µ is the system load.

Proof. Algebra, using πC`k(∅) = πC(∅)/ψk, gives us that the equation above is equivalent to

M∑
k=1

µkψk = µ− λ.

This just represents two ways of computing the long-run rate of “dummy” transitions, i.e., potential service
completions at idle servers.

Recall that the collaborative model is equivalent to the directed bipartite matching model, in which
servers of type k arrive according to a Poisson process at rate µk, and arriving servers that do not find
compatible jobs (unmatched servers) immediately leave the system. Here the interpretation of ψk is the
probability that an arriving server of type k is unmatched, and “dummy” transitions correspond to arrivals
of unmatched servers. See Weiss [46] for an alternative algorithm to compute ψk and πC(∅), as well as for
computing the long-run matching rates of class i jobs with class k servers.

The mean number of jobs L and the mean number of class-i jobs Li, with L`k and Li`k similarly defined
for the reduced system without server k and its compatible job classes, can be similarly recursively calculated.
Note that L`k and Li`k are also the conditional mean number of class-i jobs in the original system, given
server k is idle. Let S̄i = {1, . . . ,M}\Si denote the set of servers that cannot serve class-i jobs, and let
ρi = λi/(µ−(λ−λi)) be the mean number of class-i jobs in an M/M/1 queue with arrival rate λi and service
rate µ− (λ− λi).

Proposition 6.3.

Li =
λi +

∑
k∈Si

µkψkLi|−k

µ− λ
=

λi
µ− λ

+
∑
k∈Si

µkψk
µ− λ

Li|−k

L =

J∑
i=1

Li =
λ+

∑M
k=1 µkψkL`k
µ− λ

=
λ

µ− λ
+

∑M
k=1 µkψkL`k∑M
k=1 µkψk

.
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Note that λi

µ−λ is the mean number of class-i jobs in an M/M/1 queue with arrival rate λi and service

rate µ − (λ − λi) (the maximal service rate available to class-i jobs), as we argued in Section 4. It also
represents the mean number of class-i jobs in the collaborative (not necessarily nested) model given all the
servers are busy. Also, as noted above, µkψk/(µ − λ) represents the proportion of dummy transitions due
to server k being idle, so the second set of terms in the above expression represent the additional expected
jobs due to “wasted” service because of job/server incompatibilities. Note that servers in Si will not be idle
if there are class i jobs in the collaborative system.

Bonald et al. use the results above to obtain explicit results for special cases, such as redundancy-d, where
all jobs are replicated to a randomly chosen subset of d servers, and line structures in which job classes can
be ordered so that for any server k, the classes of jobs it can serve are consecutive, i.e., classes i1, i1+1, . . . , i2
for some i1 < i2 [17]. Nested structures are a special case of line structures so the above recursions represent
an alternative method for deriving mean performance metrics to the approach given in Section 4, where, of
course, mean response times follow immediately from Little’s Law.

We note that though the results for this section are for the collaborative model, in light of our observation
that the queue process in the noncollaborative model given all servers are busy has the same distribution
as the overall process for the collaborative model, we can apply the results above to the noncollaborative
case. That is, e.g., Li as computed above will equal the expected number of class-i jobs in the queue (not
receiving service) in steady state, given all the servers are busy, for the noncollaborative model.

7 Related Work

The majority of this paper has focused on surveying results related to product-form stationary distributions
and derivations of performance metrics in the collaborative and noncollaborative systems, under a few key
assumptions: that service times are exponentially distributed and i.i.d. (across jobs and across replicas of
the same job, in the collaborative model), and that the service discipline is FCFS. There are several lines
of work that relax one or more of these assumptions; such relaxations preclude product-form results, and as
such fall outside the scope of this paper. In this section we provide a brief outline of some of the related
work.

We begin with related work within the i.i.d. exponential model. Several papers have considered a schedul-
ing policy that gives priority to less flexible jobs over more flexible jobs; this policy is known as “dedicated
customers first” in the noncollaborative system and as “least redundant first” in the collaborative system.
Such a policy has been shown to be optimal in the sense that it stochastically maximizes the departure rate,
in both the noncollaborative system [7] and the collaborative system [27]. Furthermore, in the collaborative
case mean response time is decreasing and convex under this policy as the proportion of jobs that are more
flexible increases [28]. In a similar vein, the effect of increasing the “degree” of flexibility (i.e., the number
of servers with which each job is compatible) in systems with FCFS scheduling has been studied. In both
the noncollaborative [8] and collaborative [26, 38] systems, mean response time is decreasing and convex as
the degree of redundancy increases. Gurvich and Whitt [30, 31, 32] consider other routing and scheduling
policies for the noncollaborative model in the many-server heavy-traffic regime.

The system in which all jobs have the same degree of flexibility and are assigned a set of compatible
servers uniformly at random is one special case of the system structure considered in this paper. This special
case, often referred to as a “redundancy-d” system (the d indicating the degree of flexibility), has received
considerable attention in the literature because the symmetric system structure makes analysis more feasible
in many cases. Indeed, the redundancy-d system is another example of a system in which, under the i.i.d.
exponential and FCFS assumptions of this paper, it is feasible to aggregate the product-form stationary
distribution to derive performance metrics [11, 26].

Several papers have noted the lack of realism of the i.i.d. exponential assumptions, and have found that
relaxing them can change the system performance significantly. For example, mean response time no longer
decreases as d increases in the collaborative redundancy-d model [29] when the processing times of jobs
are correlated across servers. The stability region can also be quite different when the i.i.d. exponential
assumptions are relaxed [9, 34, 40, 42, 43, 44].

Finally, there has been work on optimally routing and scheduling, rather than following FCFS, for
queueing models with bipartite job class/server compatibilities. See the paper by Chen, Dong and Shi in
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this issue for a survey [22].

8 Conclusion

This paper presents an overview of product-form results in systems with flexible jobs and servers, in which
a bipartite graph structure specifies which job classes can be served by which servers. We primarily focus
on two models for service: the collaborative model, in which multiple servers can work together to serve a
single job at a faster rate, and the noncollaborative model, in which each job is permitted to enter service
on only one server. Both models have been studied extensively in the literature; this survey brings together
the two models, as well as several other related systems, using a common language and set of notation. Our
hope is that this will allow readers to draw new connections among these similar systems. Along the way,
we have presented several new results that highlight the relationships between models and that show how
results derived in one model can be used to obtain insights for the other.

One of the primary goals in analyzing queueing systems is to determine response time distributions;
in multi-class systems such as those considered in this paper, we wish to derive per-class response time
distributions. Each of the three state descriptors that we consider allows us to make partial progress towards
this goal. Using the detailed state descriptor of Section 3, we can derive per-class response time distributions
for the special case of nested systems. Using the partially aggregated states of Section 5, we can derive per-
class queueing time distributions in general (not necessarily nested) systems, but now conditioned on the
ordered set of busy servers. Using the per-class aggregated states of Section 6, we can derive unconditional
per-class mean performance metrics in general systems, but this approach does not yield distributional
results. Each approach has its advantages and disadvantages; we believe that a unifying analysis that
provides exact unconditional per-class response time distributions is likely to be infeasible, but this remains
an open question.
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