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Abstract
Intelligent dispatching is crucial to obtaining low response times in large-scale sys-
tems. One common scalable dispatching paradigm is the “power-of-d,” in which the
dispatcher queries d servers at random and assigns the job to a server based only on the
state of the queried servers. The bulk of power-of-d policies studied in the literature
assume that the system is homogeneous, meaning that all servers have the same speed;
meanwhile, real-world systems often exhibit server speed heterogeneity. This paper
introduces a general framework for describing and analyzing heterogeneity-aware
power-of-d policies. The key idea behind our framework is that dispatching policies
canmake use of server speed information at two decision points: when choosingwhich
d servers to query and when assigning a job to one of those servers. Our framework
explicitly separates the dispatching policy into a querying rule and an assignment
rule; we consider general families of both rule types. While the strongest assignment
rules incorporate both detailed queue-length information and server speed information,
these rules typically are difficult to analyze. We overcome this difficulty by focusing
on heterogeneity-aware assignment rules that ignore queue length information beyond
idleness status. In this setting, we analyze mean response time and formulate novel
optimization problems for the joint optimization of querying and assignment.We build
upon our optimized policies to develop heuristic queue length-aware dispatching poli-
cies. Our heuristic policies perform well in simulation, relative to policies that have
appeared in the literature.
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1 Introduction

Large-scale systems are everywhere, and deciding how to dispatch an arriving job
to one of the many available servers is crucial to obtaining low response time. One
common scalable dispatching paradigm is the “power-of-d,” in which the dispatcher
queries d servers at random and assigns the job to a server based only on the state of the
queried servers. Such policies incur a much lower communication cost than querying
all servers while sacrificing little in theway of performance. However, many power-of-
d policies, such as Join theShortestQueue-d (JSQ-d)1 [19], share a notableweakness:
they do not account for the fact that, in many modern systems, the servers’ speeds are
heterogeneous. Unfortunately, such heterogeneity-unaware dispatching policies can
perform quite poorly in the presence of server heterogeneity [7]. Indeed, it is not
straightforward to determine how to dispatch in heterogeneous systems to achieve
low mean response times. For example, it may sometimes be desirable to exclude the
slowest classes of servers entirely, yet at other times even the slow servers are needed
to maintain the system’s stability.

Motivated by the need for dispatching policies that perform well in heterogeneous
systems, researchers have designed new policies for this setting. For example, under
the Shortest Expected Delay-d (SED-d) policy the dispatcher queries d servers uni-
formly at random and assigns the arriving job to the queried server at which the job’s
expected delay (the number of jobs in the queue, scaled by the server’s speed) is
the smallest [26]. Under the Balanced Routing (BR) policy, the dispatcher queries d
servers with probabilities proportional to the servers’ speeds and assigns the arriving
job to the queried server with the fewest jobs in the queue [4]. While both of these
policies generally lead to better performance than the fully heterogeneity-unaware
JSQ-d policy, there is still substantial room for improvement. Together, SED-d and
BR illustrate a key observation about how to design heterogeneity-aware power-of-d
dispatching policies. There are two decision points at which such policies can use
server speed information: when choosing which d servers to query (exploited by BR),
and when assigning a job to one of those servers (exploited by SED-d).

One of the primary contributions of this paper is the introduction of a general frame-
work to describe and analyze heterogeneity-aware power-of-d policies; we discuss our
framework in detail in Sect. 3. Our framework explicitly separates the dispatching pol-
icy into a querying rule that determines how to select d servers upon a job’s arrival,
and an assignment rule that determines where among the d queried servers to send
the job. Both SED-d and BR fit within our framework, as do many other policies that
have been proposed and studied in the literature. For example, recent work has pro-
posed two families of policies that leverage heterogeneity at both decision points by
querying fixed numbers of “fast” and “slow” servers, then probabilistically choosing
whether to assign the job to a fast or a slow server based on the idle/busy statuses
of the queried servers [7]. One can also imagine designing new policies within our
framework; for example, a policy could query d servers probabilistically in proportion
to their speeds—as in BR—and then assign the job to the queried server at which its

1 Throughout, names and abbreviations of individual rules and policies are rendered in sans-serif font; see
“Appendix A” for a list of individual rules and policies proposed, studied, and/or referenced in this paper.
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expected delay is smallest—as in SED-d (for more details on how such policies fit into
our framework, see Sects. 3 and 7 ).

Our framework is quite general in the space of querying rules it permits:we allow for
any querying rule that is static (i.e., ignores past querying and assignment decisions)
and symmetric (i.e., treats servers of the same speed class identically). The BR querying
rule—viewed separately from the fact that the BR dispatching policy from [4] uses
JSQ assignment—for example, clearly satisfies these properties. The BR querying rule
is a member of what we call the Independent and Identically Distributed Querying
(IID) family of querying rules.2 Each specific policy within this family selects each
of the d servers independently according to the same distribution over the server
speed classes. That is, the IID family of querying rules is parameterized by a set of
probabilities that determine the rates at which each server class is queried.

We consider several families of querying rules that satisfy the static and symmetric
properties; as is the case for the IID family, each family is characterized by its own set
of probabilistic parameters that determine how to select the d servers, and different
settings for these parameters specify different policies within the family (e.g., one
parameter setting of the IID querying rule family yields the BR querying rule, as
alluded to above). Other examples of querying rule families in the literature include
Single Random Class (SRC) [20], under which a single server class is selected
probabilistically for each arriving job and all d queried servers are chosen from that
class, and Deterministic Class Mix (DET) [7], under which the d queried servers
always contain a fixed number of servers of each class. We also introduce several new
families of querying rules that generalize those in the literature in various ways.

Our framework also permits a wide range of assignment rules. For example,
included in our framework are assignment rules such as Shortest Expected Delay
(SED) and Join the ShortestQueue (JSQ), whichwhen pairedwithUniformQuerying
(UNI)—the querying rule defined in Sect. 3.2 that queries each server with equal prob-
ability, regardless of its class—constitute the SED-d and JSQ-d dispatching policies
as they are typically defined in the literature. The SED assignment rule is especially
attractive as it simultaneously incorporates both detailed queue-length information
and server class information when making an assignment decision among the queried
servers. The potentially powerful rules that make use of both class and queue-length
information, such as SED, fall within what we call the Class and Length Differen-
tiated (CLD) family of assignment rules. Unfortunately, general CLD assignment
rules (including SED) preclude tractable exact performance analysis. In light of this
tractability barrier, we introduce theClass and Idleness Differentiated (CID) family
of assignment rules, a subfamily of CLD. The assignment rules in the CID family
eschew detailed queue length information and make assignment decisions based only
on the idle/busy statuses and classes (speeds) of the queried servers. Even with the
information limitations imposed by theCID family, there is a rich space of reasonable
ways to assign jobs among queried servers of different speeds and idle/busy statuses.
While it is natural to favor an idle fast server over a slower server—whether busy or
idle—it is less obvious whether a busy fast server or an idle slow server is prefer-

2 Throughout, names and abbreviations of parameterized families of rules and policies are rendered in bold
serif font; see “Appendix A” for a list of families of rules and policies proposed, studied, and/or referenced
in this paper.
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able; it can even be beneficial to occasionally assign jobs to a busy slow server over
a busy fast server. Following our earlier work in [7], we make decisions of this sort
probabilistically. As a result, policies within the CID family of assignment rules are
parameterized by the probabilities with which each queried server class is assigned
the arriving job. Specifically, each set of parameters that specifies an assignment rule
within CID encodes a distribution over the classes for each type of “scenario” the
dispatcher may confront—in terms of the speed classes of servers queried and their
idle/busy statuses. As we show, unlike the dispatching policies driven byCLD assign-
ment, dispatching policies constructed from any static and symmetric querying rule
and a CID assignment rule are amenable to exact analysis (Sect. 4).

In light of the fact that we can—and do—analyze CID-driven dispatching polices,
the bulk of this paper (Sects. 4–6) is devoted to the study of families of dispatching
policies that are formed by combining one of several families of querying rules (e.g.,
IID, SRC) with the CID family of assignment rules. Each resulting family consti-
tutes (often infinitely) many possible individual dispatching policies, each of which
is specified by a different choice of the probabilistic parameters governing the chosen
querying and assignment rule families. In Sect. 5, we formulate optimization prob-
lems for jointly determining the querying and assignment rule parameterizations that
yield the lowest mean response time for a given set of system parameters (e.g., arrival
rate, server classes, etc.). To the best of our knowledge, this paper is the first to fea-
ture a joint-optimization of the querying and assignment decisions across continuous
parameter spaces for both rule types; while our earlier work [7] features a joint opti-
mization, that paper considers only the DET querying family with only two server
classes, which yields at most |DET| = d + 1 possible querying rules. In addition to
our allowance for continuous spaces of querying and assignment rules, in this paper
we allow for any number of server classes, yielding substantially larger and more
complicated optimization problems; for details on the sizes of our optimization prob-
lems see Appendix D of [12]. Nonetheless, the problem of selecting an optimal policy
from many of the families introduced in this paper is significantly less computation-
ally intensive than the corresponding problem associated with DET-based policies,
such as those in [7], because the continuous space of our querying rules allows for
purely continuous optimization, obviating the need for combinatorial optimization.
We discuss practical considerations and present a numerical study of the performance
of CID-driven dispatching policies in Sect. 6.

Understandably, restricting ourselves to the CID assignment rule family leads to
sacrifices in performance; one would expect CLD assignment rules such as SED to
yield lower mean response times when paired with a judiciously chosen querying rule.
At the same time, because of the difficulty of finding exact mean response times for
CLD assignment rules—which make use of both server speed and detailed queue
length information—it is also challenging to systematically identify querying rules
that perform well in tandem with the CLD assignment rules. In Sect. 7, we offer
the following heuristic remedy to the problem of finding suitable querying rules to
be paired with those assignment rules that are not amenable to tractable analysis:
we pair various assignment rules in CLD (e.g., SED) with a querying rule that was
jointly optimized with a CID assignment rule. Simulation results demonstrate that
these heuristic dispatching policies tend to perform favorably to other policies—both
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those existing in the literature and the CID-based policies we study in this paper.
Furthermore, our results yield insights about the relative importance of the querying
and assignment decisions at different system loads: we observe that at light load the
querying decision drives the dispatching policy’s performance, whereas at heavy load
the assignment decision plays the larger role.

While throughout the paper, we operate under the assumption that job sizes are
exponentially distributed, many of our results hold for generally distributed job sizes
(see Appendix F of [12] for details). The work presented in this paper is a starting
point for the further study of the policies within our framework; to this end, we discuss
ample opportunities for future work in Sect. 8.

2 Literature review

In large-scale systems, the power-of-d is the dominant dispatching paradigm; power-
of-d policies operate by querying d servers uniformly at random and dispatching an
arriving job to one of the queried servers. The best-known policy within this paradigm
is Join the Shortest Queue-d (JSQ-d), under which a job is dispatched to the server
with the shortest queue among the d queried servers. Response time under JSQ-d has
been analyzed, under the assumption of homogeneous servers and exponential service
times [19, 32]. JSQ-2 has also been studied in heterogeneous systems with general
service times under both the FCFS [11, 40] and Processor Sharing (PS) scheduling
rules [20]. Variants of JSQ-d include JSQ(d, T ), under which a job is dispatched to a
queried server with workload less than a threshold T , and Join the Idle Queue-d (JIQ-
d), which is a special case of JSQ(d, T ) with T = 0 [9]. While power-of-d policies
typically are designed for homogeneous systems, several heterogeneity-aware policies
akin to JSQ-d also have been proposed. These include Shortest Expected Delay-d
(SED-d), which uses server speed information to assign a job to a queried server based
on the expectedwaiting time rather than the number of jobs in the queue, and Balanced
Routing (BR), which queries d servers with probabilities proportional to their speeds
and then uses JSQ assignment [4]. Other power-of-d-like families of policies that make
use of server speed information include JIQ-(dF , dS) and JSQ-(dF , dS) [7], as well
as the Hybrid SQ(2) Scheme, which has been studied under the Processor Sharing
(PS) scheduling discipline [20]. All of these policies fit within our framework; we will
discuss many of them in more detail, in the context of our framework, in the sections
that follow.

A different stream of related literature focuses on policies that use information
about all servers’ states when making dispatching decisions; because these policies
do not involve querying a subset of the servers, they fall outside of our framework. The
most well-known policy in this category is Join the Shortest Queue (JSQ), which is
known to minimize mean response time in homogeneous systems with FCFS schedul-
ing, assuming that service times are independent and identically distributed and have
non-decreasing hazard rate [35, 38]. Mean response time under JSQ has been analyzed
approximately under both FCFS scheduling, assuming exponential service times [21],
and PS scheduling, assuming general service times [8]. Join the Idle Queue (JIQ)
was proposed as a low-communication alternative to JSQ [16, 34]; again, the analysis
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assumes homogeneous servers. More recently, several heterogeneity-aware variants
on JSQ and JIQ have been proposed and studied [28, 40]. While some of these policies
have been shown to stochastically minimize the queue length distribution in hetero-
geneous systems [28], this does not imply optimality with respect to mean response
time. Indeed, policieswithin our framework can outperform these heterogeneity-aware
policies that use state information from all servers (see, e.g., [7]).

Still other scalable heterogeneity-aware policies have been designed for systems
with slightly different modeling assumptions than those we consider in this work.
For example, the JFIQ and JFSQ policies were designed for systems in which jobs
have locality constraints (i.e., each job is capable of running on only a subset of the
servers) [36]. While the assignment rules used in these policies are similar to some
of the assignment rules that fit within our framework, the JFIQ and JFSQ dispatching
policies would not be considered part of our framework because they do not involve
querying a subset of servers; instead, the dispatcher considers all compatible servers
for each arriving job. Similarly, the Local Shortest Queue (LSQ) family of policies
[31] is orthogonal to our work; these policies assume multiple dispatchers, each of
which store a local—possibly out of date—view of server states. While some of the
policies in theLSQ family are quite similar to policies in our framework, the analytical
approach and key insights of [31] are fundamentally different from our work because
of the use of out of date information.

Another category of heterogeneity-aware dispatching policies that fall outside our
framework includes those policies that are designed specifically for small-scale sys-
tems. Policies in this category use information about all servers’ queue lengths—and
sometimes more detailed information—when making dispatching decisions [2, 3, 6,
10, 27, 30]. These policies typically would not be considered scalable and hence are
less applicable to the setting we consider in this paper. Some policies, such as Shortest
Expected Delay and Generalized Join the Shortest Queue, have well-defined power-
of-d variants appropriate for large-scale systems. Thus far, analysis of these policies
has focused on systems with only a small number of servers [1, 25, 26, 37]; we con-
sider the power-of-d versions of these policies, which do fall within our framework,
in later sections. Further away from our setting is work focusing on the “slow server
problem,” which asks whether a slow server should be used at all [13–15, 18, 22–24].
These models consider systems with a central queue, and thus, the policies proposed
do not apply to our setting.

3 Model and framework

The framework introduced in this paper necessitates a large volume of notation.
Throughout the paper, notation is defined when introduced. Additionally, most of
the notation in the paper is summarized in “Appendix A.”
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3.1 Preliminaries

We consider a system with k servers. There are s classes of server speeds,

S ≡ {1, . . . , s}, (1)

where the number of class-i servers is ki ; let qi ≡ ki/k be the fraction of servers
belonging to class i . In the interest of both clarity and tractability, we assume that the
size (i.e., service requirement in terms of time) of a job running on a class-i server is
exponentially distributed with rateμi (for a discussion of generally distributed service
times, see Appendix F of [12]). Classes are indexed in decreasing order of speed, i.e.,

μ1 > · · · > μs . We assume that
s∑

i=1

μi qi = 1. Jobs arrive to the system as a Poisson

process with rate λk. Except where stated otherwise, we carry out our analysis in the
regime where k → ∞ under the assumption of asymptotic independence (see Sect. 4
for details).

The goal is to minimize the mean response time E[T ], i.e., the end-to-end duration
of time from when a job first arrives to the dispatcher until it completes service at
one of the servers. Upon a job’s arrival, the dispatcher (i) queries a given number
(d � k) of servers according to a querying rule and then (ii) sends the job to one of
the queried servers according to an assignment rule, at which (iii) the job is queued
and/or served according to a work-conserving scheduling rule. In this paper, we are
primarily interested in elaborating on and analyzing the consequences of the first two
rule types—querying and assignment; together these two rules constitute the totality
of the dispatching policy. We denote the dispatching policy that uses querying rule
QR and assignment rule AR by 〈QR,AR〉. Our goal is to find dispatching policies (i.e.,
jointly determine how to query servers and how to assign jobs) that result in low mean
response times. While explicitly determining and evaluating the performance of the
optimal policy will be prohibitively difficult, we propose some families of rules that
are simple to implement and understand alongside techniques for identifying optimal
rules within these families given a particular problem instance.

The details of how individual rules function can depend on the parameters of a par-
ticular system (i.e., on the number of server classes s, the server speeds μ1, . . . , μs ,
the fraction of the total server count constituting each class, the arrival rate, λ, etc.) and
the query count d (which we can take as given). A family of (querying or assignment)
rules is a collection of individual rules parameterized by a shared set of additional deci-
sion variables (e.g., probabilistic parameters indicating which server classes should
be queried or which server should be assigned a job given the state of the queried
servers). We are interested in rule families insofar as they allow us to optimize over
their parameter spaces in order to find the specific rule that minimizes the mean
response time E[T ] within that family for a given system parameterization. We note
that this optimization is performed once for a given system; the same querying rule
and assignment rule are then applied throughout the system’s lifetime. Even where
optimization is prohibitively intractable, we can still set parameter values heuristically
in the hope of finding strong policies among those available within a family.

123



438 Queueing Systems (2022) 102:431–480

Throughout the paper, we use the following convention: the abbreviated names
of individual (querying, assignment, and scheduling) rules and dispatching policies
are rendered in a sans-serif font (e.g., a querying rule QR, an assignment rule AR,
and a dispatching policy DP), while those of entire families of rules and policies
are rendered in a bold serif font (e.g., a querying rule family QRF, an assignment
rule family ARF, and a dispatching policy family DPF). Often, we will also denote
families of dispatching policies by extending our notation for individual dispatch-
ing rules 〈QR,AR〉 as follows: for an individual querying rule QR and a family of
assignment rules ARF, let 〈QR,ARF〉 ≡ {〈QR,AR〉 : AR ∈ ARF} be the family
of dispatching policies constructed from the individual querying rule QR in com-
bination with any individual assignment rule AR belonging to the family ARF. By
analogy, for a querying rule family QRF and individual assignment rule AR, let
〈QRF,AR〉 ≡ {〈QR,AR〉 : QR ∈ QRF}. When discussing a family of dispatching
policies where neither querying nor assignment is restricted to an individual rule, we
write 〈QRF,ARF〉 ≡ {〈QR,AR〉 : QR ∈ QRF, AR ∈ ARF}.

We assume throughout that the sizes of specific jobs are unknown until they are
completed, and hence, we restrict attention to querying, assignment, and scheduling
rules that cannot make use of (i.e., are “blind” to) job size information. We further
assume that querying and assignment decisions are made and carried out instanta-
neously without any overheads; consequently, jobs may not be held at the server for
dispatching at some later time. Under the assumption of exponentially distributed job
sizes, our analysis and results hold under all work conserving size-blind scheduling
rules. Under general service time distributions, this is no longer the case; for a dis-
cussion of the interaction between service time distributions and scheduling rules, see
Appendix F of [12]).

3.2 Overview of querying rules

When a job arrives, the dispatcher queries d servers at random according to a querying
rule. Throughout this paper, in the interest of tractability, brevity, and simplicity, we
restrict attention to those querying rules that are static and symmetric (properties that
we define below).

Definition 1 A querying rule is static if each querying decision is made without refer-
ence to any kind of state information, i.e., the set of servers queried upon a job’s arrival
is chosen independently of all past and future querying and assignment decisions.

Insisting that our querying rules be static is motivated by simplicity and may pre-
clude some superior querying rules: it is conceivable that there would be some benefit
in weighting the likelihood that a server is queried in terms of how recently it was
queried (or better yet, in terms of how recently it was assigned a job), which is not
possible under static querying rules. We note in particular that restricting attention to
static querying rules precludes round-robin querying (i.e., the rule where all servers
would be put into an ordered list, and one would query by going down the list and
querying the next d servers at each arrival, cycling back to the beginning of the list
after querying the server at the end of the list). Nevertheless, this restriction comes
with an important advantage: static querying rules can be uniquely and unambiguously
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described in terms of a probability distribution over the set of all d-tuples of servers.
By further imposing that our static querying rules also be symmetric (according to the
definition that follows), we can simplify these distributions even further.

Definition 2 A static querying rule is symmetric if it is equally likely to query a set of
d servers U1 or U2 whenever U1 and U2 contain the same number of class-i servers
for all i ∈ S.

Essentially, a static symmetric querying rule is one where each query is carried out
independently of all others (as with all static querying rules), while no server (respec-
tively, combination of servers) is ex ante treated any differently than any other server
(respectively, combination of servers) of the same class (respectively, class composi-
tion). As with the restriction to static querying rules, requiring that a querying rule be
symmetric may preclude superior dispatching policies.

These restrictions motivate the introduction of some additional notation and ter-
minology. Let Di denote the number of class-i servers in a given query, let D ≡
(D1, . . . , Ds) denote the class mix, let di and d ≡ (d1, . . . , ds) denote the realizations
of the random variable Di and the random vector D, respectively, and finally let

D ≡ {d : d1 + · · · + ds = d} (2)

be the set of all possible class mixes d (involving exactly d servers). Observe that any
static symmetric querying rule can be uniquely and unambiguously defined in terms
of a distribution over the set of all possible query mixes,D. Formally, a querying rule
is given by a function p : D → [0, 1] satisfying ∑d∈D p(d) = 1. The querying rule
selects servers so that P(D = d) = p(d).

We conclude this subsection by introducing themain families of querying rules—in
addition to two individual rules—studied in this paper, taking the query count d as
given:

– The General Class Mix (GEN) family consists of all (and only those) querying
rules that are static and symmetric. Note that such querying rules are equally likely
to query any combination of d servers that constitute the same query mix d ∈ D.
The following families are all subsets of GEN.

– The IndependentQuerying (IND) family consists of those querying rules inGEN
where each of the d servers to be queried is chosen independently according to
some (but not necessarily the same) probability distribution over the set of classes
S. Consider the following example of a policy in IND when s = d = 3: always
query at least one class-1 server, exactly one class-2 server, and either an additional
class-1 server or a class-3 server with equal probability. Note that we ignore the
possibility of a single server being queried more than once, as we are primarily
concerned with the setting where the number of servers in each class ki → ∞.

– The Independent and Identically DistributedQuerying (IID) family consists of
those querying rules inGEN where each of the d servers to be queried are chosen
independently according to the same probability distribution over the set of classes
S, and hence, the random vector D is drawn from amultinomial distribution under
IID querying. IID is a subfamily of IND.
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(a) Querying rule families. Note that SFC is the
intersection of any two of the IID, DET, and SRC
families. Moreover, we have SFC = IND ∩ SRC.
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(b) Assignment rule families. Note that we have
CD ∩ ID = {ND}.

Fig. 1 Set inclusion diagrams for the (a) querying rule families and (b) assignment rule families discussed
in this paper. In both diagrams, rule families are shown as regions and individual rules are shown as points

– The Deterministic Class Mix (DET) family consists of those querying rules in
GEN that always query the same class mix for some fixed class mix d ∈ D. DET
is a subfamily of IND.

– The Single RandomClass (SRC) family consists of those querying rules inGEN
that select one of the s server types according to some probability distribution over
the set of classes S and then queries d servers all of that class.

– The Single Fixed Class (SFC) family consists of those querying rules that always
query d class-i servers for some fixed class i ∈ S. Such rules essentially discard
all servers except those of the chosen class, rendering the system homogeneous.
The SFC family consists of only s querying rules and is precisely the intersection
of the IID andDET families as well as the intersection of SRC and any (nonzero)
number of the IND, IID and DET families.

– The Uniform Querying (UNI) rule is equally likely to query any combination of d
servers. To elaborate, the UNI querying rule is a member of the IID family where
each of the d servers queried is a class-i server with a probability equal to the
fraction of servers that belong to class i (i.e., with probability qi ).

– The Balanced Routing (BR) rule queries d servers independently, with the proba-
bility that any given server is queried being proportional to its speed. To elaborate,
the BR querying rule is a member of the IID family where each of the d servers
queried is a class-i server with a probability equal to the fraction of the total
system-wide service capacity provided by class-i servers (i.e., with probability
μi qi ).

Remark 1 In [4], Balanced Routing referred to what would be understood in our
framework as the dispatching policy constructed from (i) what we call the Balanced
Routing querying rule and (ii) the Join the Shortest Queue assignment rule. From this
point forward, in our paper we use the acronym BR to refer to the Balanced Routing
querying rule and not the dispatching policy.

Figure 1a depicts the set inclusion relationships between querying rule families and
individual querying rules described above.
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3.3 Overview of assignment rules

Once a set of servers has been queried, the job is assigned to one of these servers accord-
ing to an assignment rule, which specifies a distribution over the servers queried. Our
assignment rules are allowed to depend on state information, consisting of knowledge
of each queried server’s class (and hence, their associatedμi and qi values) and knowl-
edge of the queue length—including the job or jobs in service, if any—at each queried
server. We restrict attention to assignment rules that satisfy restrictions analogous to
those adopted for our querying rules.

Definition 3 An assignment rule is static if each assignment decision is made without
direct regard to past querying or assignment decisions (although such decisions can
impact the state at a server, which assignment rules may use).

Remark 2 More formally, let X t denote the state of the entire system at the time of the
t-th assignment (including the queue length at and class of each of the servers in the
system) and let 	At denote the result of the t-th query (by analogy with the notation 	A,
which we introduce in Sect. 7.1). LetFt denote the natural filtration of {X t , 	At }. An
assignment policy is static if the (potentially random) assignment choice given 	At is
the same as the assignment choice given Ft .

Definition 4 A static assignment rule is symmetric if it does not use information about
the specific identities of the queried servers and can only use their state information.
That is, given a set of queried servers with identical states, the job is equally likely
to be assigned to any one of those servers and the probability with which that job is
assigned to one of those servers depends only on the state (and not the identities) of
those servers and the states (and not the identities) of the other queried servers.

We consider six families of static and symmetric assignment rules. We proceed to
describe these families,which differ fromone another in theways they can differentiate
the states of the queried servers for the purpose of making assignment decisions:

– The Non-Differentiated (ND) assignment rule cannot differentiate between server
states. This is equivalent to uniform assignment among the servers in the query.We
note that using the ND assignment rule is antithetical to the purpose of the power-
of-d paradigm, as an equivalent dispatching policy can always be implemented
with d = 1.

– Assignment rules in the Class Differentiated (CD) family may differentiate
between server states only on the basis of class information.

– Assignment rules in the Idleness Differentiated (ID) family may differentiate
between server states only on the basis of idleness information, e.g., Join the Idle
Queue (JIQ).

– Assignment rules in the Length Differentiated (LD) family may differentiate
between server states only on the basis of queue-length information, e.g., Join the
Shortest Queue (JSQ).

– Assignment rules in the Class and Idleness Differentiated (CID) family may
differentiate between server states only on the basis of class and idleness informa-
tion.
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– Assignment rules in the Class and Length Differentiated (CLD) family may
differentiate between server states on the basis of both class and queue-length
information, e.g., Shortest Expected Delay (SED).

As shown in Fig. 1b, the CLD family includes all of the other assignment rule
families under consideration. Naturally, among the dispatching policies that we con-
sider, those that achieve the best performance (i.e., the lowest mean response time)
necessarily make use of the querying rules in the CLD family. Specific policies that
belong to only the CLD family (among the six mentioned above) may be amenable
to numerical response time approximation. However, the curse of dimensionality fre-
quently obstructs the use of optimization techniques for the systematic discovery of
strong-performing policies within this family. Meanwhile, the study of the LD fam-
ily can exhibit complications similar to those exhibited by CLD, while lacking the
advantage of exploiting heterogeneity to obtain low response times. Therefore,CID—
which subsumes CD and ID—emerges as the richest family under consideration that
is amenable to analysis, so we devote Sects. 4–6 to exploring this family of assign-
ment rules (in conjunction with the various families of querying rules introduced in
Sect. 3.2). We explore the wider CLD family of assignment rules in Sect. 7, where
we leverage our extensive study of CID-driven dispatching policies (presented in the
aforementioned sections) to find superior policies with assignment rules in CLD.

4 Analysis of Class and Idleness Differentiated assignment rules

In this section, we examine the CID family of assignment rules in detail. We provide
a formal presentation of this family (Sect. 4.1), prove stability results (Sect. 4.2), and
present an analysis of the mean response time of the 〈GEN,CID〉 dispatching policies
(Sect. 4.3).

4.1 Formal presentation of the Class and Idleness Differentiated family of
assignment rules

Assignment rules in the CID family are—as the family’s name clearly suggests—
length-blind but idle-aware, i.e., such an assignment rule can observe and make
assignment decisions based on the idle/busy status of each of the queried servers,
but it cannot observe the queue length at each busy server (of course, the queue
length at each idle server must be 0). By eschewing examining detailed queue length
information, we facilitate tractable analysis. Meanwhile, idle-awareness motivates the
introduction of some new notation: we encode the idle/busy statuses of the queried
servers by a ≡ (a1, . . . , as), where ai is the number of idle class-i servers among the
di queried. The set of all possible a vectors is given by A ≡ {a : a1 + · · · + as ≤ d}.
Note that ai and a are realizations of the random variable Ai and the random vector
A (which are defined analogously to Di and D), respectively.

Formally, an assignment rule is given by a family of functions αi : A×D → [0, 1]
parameterized by i ∈ S. For all a ∈ A and d ∈ D such that a ≤ d (element-wise)
these families must satisfy

∑
i∈S αi (a, d) = 1 and αi (a, d) = 0 if di = 0. Given such
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a family of functions (together with a query resulting in vectors a ∈ A and d ∈ D)
the dispatcher sends the job to a class-i server with probability αi (a, d). At this point,
we assign to an idle class-i server (if possible) or a busy class-i server (otherwise),
chosen uniformly at random.

We prune the set of assignment rules by avoiding rules that allow assignment to
a slower server when a faster idle server has been queried. That is, αi (a, d) = 0
whenever there is a class j < i such that a j ≥ 1.Moreover, whenever a �= 0, the value
of αi (a, d) depends only on the realized value of the random variable J ≡ min{ j ∈
S : A j > 0}—the class of the fastest idle queried server—andon d (specifically, on the
realization of the random set { j < J : d j > 0}). For notational convenience, we take
min ∅ ≡ s+1, so that J is defined on S̄ ≡ S∪{s+1} = {0, 1, 2, . . . , s, s+1} and J =
s+1 when all queried servers are busy, in which case there is no idle server and we can
consider the (nonexistent) fastest idle queried server as belonging to (the nonexistent)
class s + 1. This structure allows us to introduce the following abuse of notation that
will facilitate the discussion of our analysis: αi ( j, d) ≡ αi (a, d) for all j ∈ S̄ and
a ∈ A such that J = j whenever A = a, i.e., such that j = min{ j ′ ∈ S : a j ′ > 0}.
Note that as a consequence of this notation, we have αi (s + 1, d) = αi (0, d). Further
note that we must have αi ( j, d) = 0 whenever di = 0 (we cannot send the job to a
server that was not queried) and moreover we set αi ( j, d) = 0 whenever d j = 0 and
j �= s + 1 (the fastest queried idle server must of course be queried).

4.2 Stability

In this section, we identify necessary and sufficient conditions for the existence of
a stable dispatching policy within the 〈QRF,CID〉 family for the various families
of querying rules, QRF, presented in Sect. 3.2. We say that the system is stable if
the underlying Markov chain is positive recurrent. This is a necessary condition for
achieving finite mean response time. In order to establish stability, it is sufficient to
show that, when busy, each server experiences an average arrival rate that is less than
its service rate. This implies that the mean time between visits to the idle state is finite,
and hence that the underlying Markov chain is positive recurrent as required. Let λBi
denote the average arrival rate to a busy class-i server.

Definition 5 The system is stable if, for all server classes i ∈ S, we have λBi < μi .

Proposition 1 Recalling that λ is the average arrival rate per server (i.e., λk is the
total arrival rate to the system), the following necessary and sufficient conditions for
stability hold:

1. There exists a policy in the 〈SRC,CID〉 family such that the system is stable if
and only if λ < 1.

2. There exists a policy in the 〈SFC,CID〉 family such that the system is stable if and
only if λ < max j μ j q j .

3. Consider a dispatching policy in the 〈DET,CID〉 family, where the query mix is
always d (note that each individual policy within 〈DET,CID〉 has only one query
mix). The system is stable if and only if λ <

∑

i : di>0

μi qi .
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4. Under 〈BR,CID〉, the system is stable if and only if λ < 1.
5. There exists a policy in 〈IID,CID〉 such that the system is stable if and only if

λ < 1.
6. There exists a policy in each of 〈IND,CID〉 and 〈GEN,CID〉 such that the system

is stable if and only if λ < 1.

Proof We prove each case separately:

1. Consider a querying rule in SRC where the probability that all queried servers are
of class i is given by μi qi . Then, by Poisson splitting, the class-i servers act like
a homogeneous system, independent of all other server classes, with a total arrival
rate λkμi qi = λkiμi . Given that only class-i servers are present in the query, the
CID assignment rule will assign the arriving job to an idle server, if one is present
in the query, and a busy server chosen uniformly at random (among the servers in
the query) if not. This assignment rule is symmetric among class-i servers, and so
the arrival rate to an individual class-i server is λμi , which is less thanμi , ensuring
the stability of the system, provided that λ < 1.

2. SFC effectively throws out all server classes except one, which we will call class
i ; by a similar argument as in the proof for SRC, the class-i subsystem will remain
stable provided that λ < μi qi . Then, the largest stability region is achieved by
selecting the server class with the largest total capacity.

3. Given that we always query according to some fixed query mix d ∈ D, construct
an assignment rule in CID (yielding a dispatching policy in 〈DET,CID〉) under
which, for all i ∈ S such that di > 0, the job is dispatched to a queried class-i
server (chosen uniformly at random without considering any idle/busy statuses)
with probability μi qi

/ ∑

j :d j>0

μ j q j (note that this assignment rule is a member of

CD ⊆ CID as it ignores idle/busy statuses, and therefore does not adhere to our
pruning of the space of assignment rules). Then, the total arrival rate to class-i
servers is

λk · μi qi∑

j :d j>0

μ j q j

= μi ki · λ
∑

j :d j>0

μ j q j

,

which is less than μi ki , ensuring stability of the class-i servers, provided that
λ <

∑

j :d j>0

μ j q j .

4. From [4], we have that 〈BR, JSQ〉 is stable if and only ifλ < 1. For all (i, d) ∈ S×D
let βi (d) denote the probability that an arriving job is sent to a class-i server under
〈BR, JSQ〉, given that the query mix is d (i.e., βi (d) is the probability that the
shortest queue is at a class-i server, given query mix d). Now form a policy in the
family 〈BR,CID〉 by sending the job to a queried class-i server (chosen uniformly
at random without considering any idle/busy statuses) with probability βi (d) for
all (i, d) ∈ S × D (note that this assignment rule is a member of CD ⊆ CID as
it ignores idle/busy statuses, and therefore does not adhere to our pruning of the
space of assignment rules). The probability that an arriving job is dispatched to a
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class-i server is the same under this newly defined policy in 〈BR,CID〉 as under
〈BR, JSQ〉; the only difference is that now all jobs can be viewed as being routed
entirely probabilistically. This will not change the stability region, as λBi remains
unchanged for all i ∈ S.

5. This follows from the stability condition for 〈BR,CID〉, which is a member of
〈IID,CID〉.

6. This follows from item 5 above and the fact that 〈IID,CID〉 ⊆ 〈IND,CID〉 ⊆
〈GEN,CID〉. ��
Note that in proving the existence of a stable dispatching policy in the 〈DET,CID〉

and 〈BR,CID〉 families (items 3 and 4 of Proposition 1, respectively), we constructed
stable dispatching policies where the assignment rules were members of CD ⊆ CID,
and hence, did not adhere to our pruning rules. It is not hard to modify these policies
to also prove the existence of stable dispatching policies within these families that
make use of idle/busy statuses and adhere to our pruning rules. Consider the simple
modificationwherewhenever the original policywould assign the job to a server that is
slower than the fastest idle server (or to a busy server of the same speed), instead assign
the job to the fastest idle server (if there is more than one fastest idle server, assign
the job to one of them chosen uniformly at random). This modification decreases the
arrival rate to busy servers and increases the arrival rate to idle servers, which cannot
destabilize the system.

We also present the following result, which amounts to a necessary condition for
stability under the UNI querying rule and any assignment rule:

Proposition 2 For any dispatching policy using the UNI querying rule, the system is
unstable if there exists a server class i ∈ S such that λ > μi/q

d−1
i .

Proof UnderUNI, a querymix consists of only class-i servers—and hence, the arriving
jobmust be dispatched to a class-i server under any assignment rule—with probability
qdi . The total arrival rate to the class-i subsystem is then greater than or equal to λkqdi .
The system is unstable if this total arrival rate is greater than the capacity of the class-i
subsystem, i.e., if λkqdi > μi ki , or, equivalently, if λ > μi/q

d−1
i . ��

4.3 Mean response time analysis

Weproceed to present a procedure for determining themean response timeE[T ] under
〈QR,AR〉 for any static symmetric querying rule QR (i.e., any QR ∈ GEN) and any
AR ∈ CID that yield a stable system.

We carry out all analysis in steady-state and rely on mean-field theory. We let
k → ∞, holding qi fixed for all i ∈ S; consequently, we also have ki → ∞ for all
i ∈ S. We further assume that asymptotic independence holds in this limiting regime,
meaning that (i) the states of (i.e., the number of jobs at) all servers are independent,
and (ii) all servers of the same class behave stochastically identically (see Appendix
B of [12] for simulation evidence in support of this assumption). With the asymptotic
independence assumption in place, we now find the overall mean response time as
follows:
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Proposition 3 Let λIi and λBi denote, respectively, the arrival rates to idle and busy
class-i servers. Then, the overall system mean response time is

E[T ] = 1

λ

s∑

i=1

qi

(
(1 − ρi )λ

I
i + ρiλ

B
i

μi − λBi

)
, (3)

where ρi is the fraction of time that a class-i server is busy, given by

ρi ≡ λIi

μi − λBi + λIi
. (4)

Proof First observe that under our querying and assignment rules, servers of the same
class are equally likely to be queried and,within a class, serverswith the same idle/busy
status are equally likely to be assigned a job. Hence, by Poisson splitting, it follows
that (for any i ∈ S) each class-i server experiences status-dependent Poisson arrivals
with rate λIi when idle and rate λBi when busy.

Now observe that each class-i server, when busy, operates exactly like a standard
M/M/1 system (under the chosenwork-conserving scheduling rule)with arrival rateλBi
and service rate μi . Since, by virtue of their own presence, jobs experience only busy
systems, the mean response time experienced by jobs at a class-i server—which we
denote by E[Ti ]—is 1/(μi − λBi ). Furthermore, standard M/M/1 busy period analysis
gives the expected time of the busy period duration at a class-i server as E[Bi ] ≡
1/(μi − λBi ); we note that the standard analysis of the M/M/1 queueing system also
tells us that while E[Bi ] = E[Ti ], Bi and Ti are not identically distributed.

Applying the renewal reward theorem immediately yields that ρi (the fraction of
time that a class-i server is busy) is as given in Eq. 5 as claimed:

ρi = E[Bi ]
1/λIi + E[Bi ]

= λIi

μi − λBi + λIi
. (5)

Finally, we find the system’s overall mean response time by taking a weighted
average of the mean response times at each server class. Let λi ≡ (1 − ρi )λ

I
i + ρiλ

B
i

denote the average arrival rate experienced by a class-i server. Recalling thatqi = ki/k,
it follows that the proportion of jobs that are sent to a class-i server is kiλi/(kλ) =
qiλi/λ, and hence

E[T ] =
s∑

i=1

(
qiλi
λ

)
E[Ti ] = 1

λ

s∑

i=1

qi

(
(1 − ρi )λ

I
i + ρiλ

B
i

μi − λBi

)
, (6)

which completes the proof.
��

Remark 3 Note that while mean response times are insensitive to the choice of (size-
blind) scheduling rule, the distribution (and higher moments) of response time do not
exhibit this insensitivity. The samemethod presented in this section can also allow one
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to readily obtain the Laplace transform of response time under many work-conserving
scheduling rules. For example, under first come first served (FCFS) scheduling one
could use the result that T̃i (w) = (μi − λi )/(μi − λi + w) for an M/M/1/FCFS with
arrival and service rates λi and μi , respectively, to obtain the overall transform of
response time T̃ (w).

In order to use Proposition 3 to determine E[T ] values, we must be able to compute
the arrival rates λIi and λBi for each i ∈ S. The following notation will prove useful
in expressing these rates: for all i ∈ S̄ ≡ {1, 2, . . . , s + 1} and d ∈ D, we let bi (d)

denote the probability that all queried servers that are faster than those in class i are
busy (i.e., all queried servers with classes in {1, 2, . . . , i−1} are busy). It immediately
follows that

bi (d) ≡ P(A1 = · · · = Ai−1 = 0|D = d) =
i−1∏

�=1

ρ
d�

� . (7)

Remark 4 Note that for all d ∈ D, we have b1(d) = 1 as it is vacuously true that
all queried servers faster than server 1 are busy as no such servers exist. Moreover,
bs+1(d) denotes the probability that all queried servers are busy given that D = d.

In the following theorem, we present a pair of equations (parameterized by i ∈ S)
for λIi and λBi .

Theorem 1 For all i ∈ S, the arrival rates to idle and busy class-i servers (i.e., λIi
and λBi , respectively), satisfy

λIi = λ

qi

∑

d∈D

⎧
⎨

⎩dibi (d)p(d)αi (i, d)

di∑

ai=1

(
di − 1

ai − 1

)
(1 − ρi )

ai−1ρ
di−ai
i

ai

⎫
⎬

⎭ (8)

λBi = λ

qiρi

∑

d∈D

⎧
⎨

⎩p(d)

s+1∑

j=i+1

b j (d)
(
1 − ρ

d j
j

)
αi ( j, d)

⎫
⎬

⎭ , (9)

where we use the abuse of notation ρ
ds+1
s+1 ≡ 0.

Theorem 1 yields 2s equations, whichwe can solve as a system for the 2s unknowns
{λIi }i∈S and {λBi }i∈S , where we take {ρi }si=1 and {bi (d)}s+1

i=1 to be as defined by Equa-
tions (5) and (7), respectively. With the λIi and λBi (and consequently, the ρi ) values
determined for all i ∈ S, we can then compute E[T ] directly from Eq. (6), completing
our analysis.

The rest of this section is devoted to proving Theorem 1, by way of three lemmas.
These lemmas will be concerned with the quantities r Ii (d) and rBi (d), defined for all
i ∈ S as follows: for all d ∈ D for which di > 0, r Ii (d) (respectively, rBi (d)) denotes
the probability that the job is assigned to the tagged (class-i) server under query mix
d given that the tagged server is queried and idle (respectively, busy). Meanwhile, for
all d ∈ D for which di = 0, we adopt the convention where r Ii (d) ≡ 0 and rBi (d) ≡ 0.
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Lemma 1 The arrival rates λIi and λBi are given by:

λIi = λ

qi

∑

d∈D
di p(d)r Ii (d) (10)

λBi = λ

qi

∑

d∈D
di p(d)rBi (d). (11)

Proof Recall that the rate at which the tagged server is queried does not depend on
its idle/busy status. Given query mix d, the probability that the query includes the
tagged server is di/ki (by symmetry). Because a query is of mix d with probability
p(d) = P(D = d), the tagged server is queried at rate

λk
∑

d∈D

(
di
ki

)
p(d) = λ

qi

∑

d∈D
di p(d).

Of course, the tagged server’s presence in the query does not guarantee that the job
will be assigned to it. The arrival rate from queries with mix d observed by the tagged
server when it is idle is

λk

(
di
ki

)
p(d)r Ii (d) =

(
λ

qi

)
di p(d)r Ii (d),

with the analogous expression holding when the tagged server is busy. It follows that
the overall arrival rates to an idle and busy class-i server (i.e., λIi and λBi , respectively)
are as claimed. ��
Lemma 2 For all i ∈ S and all d ∈ D such that di > 0, the probability that the job is
assigned to the tagged class-i server under query mix d given that the tagged server
is queried and idle is

r Ii (d) = bi (d)αi (i, d)

di∑

ai=1

(
di − 1

ai − 1

)
(1 − ρi )

ai−1ρ
di−ai
i

ai
. (12)

Proof Observe that since we are assuming that the assignment policy AR ∈ CID, the
job can be assigned to the tagged server only if all faster servers in the query are busy,
which occurs with probability bi (d) (see Equation 4.3 for details) for a given query
mix d ∈ D. If this is the case, then with probability αi (i, d) the job is assigned to an
idle class-i server chosen uniformly at random; hence, the tagged server is selected
among the ai idle class-i servers with probability 1/ai . Enumerating over all possible
cases of Ai = ai when the tagged class-i server is idle, we find the probability that
the tagged server is assigned the job when queried with mix d:

r Ii (d) = bi (d)αi (i, d)

di∑

ai=1

P(Ai = ai |D = d, tagged class-i server is idle)

ai
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= bi (d)αi (i, d)

di∑

ai=1

(
di − 1

ai − 1

)
(1 − ρi )

ai−1ρ
di−ai
i

ai
, (13)

where the latter equality follows from the fact that Ai ≥ 1 when the tagged class-i
server is idle, and so

(Ai |D = d, tagged class-iserver is idle)

∼ (Ai |D = d, Ai ≥ 1) ∼ Binomial(di − 1, 1 − ρi ) + 1,

which is in turn a consequence of our asymptotic independence assumption. ��
Lemma 3 For all i ∈ S and all d ∈ D such that di > 0, the probability that the job is
assigned to the tagged class-i server under query mix d given that the tagged server
is queried and busy is

rBi (d) = 1

diρi

s+1∑

j=i+1

b j (d)
(
1 − ρ

d j
j

)
αi ( j, d), (14)

where (as in the statement of Theorem 1) we use the abuse of notation ρ
ds+1
s+1 ≡ 0.

Proof We determine rBi (d) by conditioning on the random variable J , denoting the
class of the fastest idle queried server (see Sect. 4.1 for details). Recall that J ≡
min{ j ∈ S : A j > 0}, where we take min ∅ ≡ s + 1, so that J = s + 1 whenever all
servers are busy. Letting rBi (d|J = j) denote the probability that the job is assigned
to the tagged (class-i) server under query mix d given that J = j and the tagged server
is queried and busy, the law of total probability yields

rBi (d) =
s+1∑

j=1

rBi (d|J = j) · P(J = j |D = d, tagged class-i server is busy). (15)

In order to compute rBi (d), we first observe that, for all j ∈ S̄, the job is assigned
to some class-i server with probability αi ( j, d) (recall that αi (s + 1, d) ≡ αi (0, d)

in our abuse of notation), and hence the probability that the job is assigned to some
class-i server given that J = j is

rBi (d|J = j) = αi ( j, d)

di
. (16)

It now remains to determine P(J = j |D = d, tagged class-i server is busy). First,
we address the case where J = j for some j ∈ S. Since AR ∈ CID, whenever
j ∈ {1, 2, . . . , i}, we must have αi ( j, d) = 0 as the query contains an idle server at
least as fast as the tagged (class-i) server (which happens to be busy). Hence, we may
restrict attention to j > i , in which case—recalling that b j (d) denotes the probability
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that all queried servers faster than the tagged (class-i server) are busy, as given by
Eq. (7)—we have

P(J = j |D = d, tagged class-i server is busy) = P(J = j |D = d, Ai < Di )

=
b j (d)

(
1 − ρ

d j
j

)

ρi
, (17)

where we recall that ρ
ds+1
s+1 ≡ 0 and note that the 1/ρi factor is introduced due to the

fact that Ai < Di (because the server is known to be busy).
We can now combine Eqs. (15), (16), and (17) together with the fact that αi ( j, d) =

0 whenever j ∈ {1, 2, . . . , i} in order to obtain the claimed formula for rBi (d). ��
The proof of Theorem 1 follows from Lemmas 1, 2, and 3, together with the

convention that r Ii (d) ≡ 0 and rBi (d) ≡ 0 whenever di = 0.

5 Finding optimal dispatching policies under Class and Idleness
Differentiated assignment

Based on the analysis in the previous section, we can now write a nonlinear program
for determining optimal dispatching policies in the 〈QRF,ARF〉 family for various
choices ofQRF. This amounts to jointly determining an optimal probability distribu-
tion p over querymixes and an optimal family of functions constituting the assignment
rule αi (for i ∈ S).

Each choice of querying rule familyQRF yields a different optimization problem.
All of these optimization problems can be formulated to share a common objective
function. Meanwhile, the set of permissible querying rules (i.e., the chosen querying
rule family QRF) restricts the set of feasible decision variables. Naturally, formu-
lating problems in this way, if QRF′ ⊆ QRF, then the feasibility region of the
optimization problem associated with

〈
QRF′,CID

〉
is contained within that associated

with 〈QRF,CID〉, and hence, all such optimization problems have feasibility regions
contained within that of 〈GEN,CID〉. Consequently, if we can solve the problem
associated with 〈GEN,CID〉, then solving a problem associated with 〈QRF,CID〉
for another querying rule familyQRFwill never yield a policy that results in a strictly
lower mean response time than the one we have already found. In fact, the problem
associated with 〈GEN,CID〉 can be viewed as a “relaxation” of the others.

While the above discussion seems to suggest that one need only study the opti-
mization problem associated with 〈GEN,CID〉, there are several reasons for studying
problems associatedwith 〈QRF,CID〉 for other querying rule families,QRF ⊂ GEN.
First, as discussed in Appendix D of [12], many of the feasibility regions associated
with the other optimization problems can be expressed as polytopes in a space with far
fewer dimensions than those studied underGEN, suggesting that these other problems
might be solved more efficiently. Numerical evidence that we will present in Sect. 6.3
corroborates this suggestion. Second, as we shall discuss in detail throughout Sect. 6,
these problems are often prohibitively difficult to solve, so we rely on heuristics to
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find strong performing (although not necessarily optimal) solutions within each fam-
ily of dispatching policies. Therefore, it will sometimes be the case that even though
QRF′ ⊂ QRF, a heuristic (rather than truly optimal) “solution” to a problem asso-
ciated with

〈
QRF′,CID

〉
may outperform those obtained from 〈QRF,CID〉. Finally,

some families of rules with simpler structures may be more desirable for practical
implementation purposes.

Before presenting our optimization problems, we note that we have not consistently
formulated each problem as a restriction on the problem associated with 〈GEN,CID〉.
While for any 〈QRF,CID〉 there exists at least one formulation of the optimization
problem that resembles that of 〈GEN,CID〉 with additional constraints, we have
opted for a more “natural” approach where we tailor the optimization problem for
each dispatching policy 〈QRF,CID〉 to the structure of the choice of querying rule
family QRF.

Remark 5 The optimization problems thatwe study are of the formwhereweminimize
f : X → R on the feasible set X such that for each x ∈ X , x corresponds to a
dispatching policy that yields an overall mean response time E[T ] = f (x). We say
that two optimization problems with feasible regions X1 and X2, respectively, are
equivalent formulations of one another if both (i) for each x1 ∈ X1, there exists an
x2 ∈ X2 such that the policies corresponding to x1 in the first problem and x2 in the
second yield stochastically identical systems, and (ii) the analogous statement holds
for each x2 ∈ X2. While all formulations of a given problem have solutions that
yield identical system behavior, some formulations may be more tractable (or more
amenable to heuristic analysis) than others.

5.1 Optimizing over the General Class Mix family

We begin by considering the case where QRF = GEN, i.e., the case where we allow
for all possible (static symmetric) querying rules, where all functions p : D → [0, 1]
are valid so long as

∑
d∈D p(d) = 1.

Since both p and all of the αi functions take arguments from a domain with finitely
many elements, we would like to treat each evaluation of these functions as a decision
variable, i.e., we would like to treat p(d) for each d ∈ D and αi (a, d) for each triple
(i, a, d) ∈ S ×A×D (or αi ( j, d) for each triple (i, j, d) ∈ S × S̄ ×D when using
our abuse of notation) as decision variables, with appropriate constraints. However,
as we have discussed earlier, we have pruned the decision space so that αi (a, d)

depends only on the class of the fastest idle queried server J ≡ min{ j ∈ S : A j > 0}
realized under the event (A, D) = (a, d) and on the (realized value of the) set of
classes of queried servers that are faster than class-J servers { j < J : Dj > 0}
under the same event. For example, consider a setting where s = 4 and d = 6,
where d1 = (4, 0, 1, 1), a1 = (0, 0, 1, 1), d2 = (2, 0, 3, 1), and a2 = (0, 0, 3, 0).
Under both the events (A, D) = (a1, d1) and (A, D) = (a2, d2), we have J = 3,
while { j < J : Dj > 0} = {1}, and so we must have αi (a1, d1) = αi (a2, d2)—and
equivalently, using our abuse of notation, we must have αi (3, d1) = αi (3, d2)—for
all i ∈ {1, 2, 3, 4}.
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Thepruningdescribed above could be enforced in our optimization problem through
the introduction of constraints, but we may also approach pruning more directly by
reducing the set of decision variables. We opt for the latter, to which end we introduce
the map γ : S̄ × D → D. In order to define γ , let I {·} denote the indicator function,
let ei denote the i-th s-dimensional unit vector (so that, e.g., when s = 4, we have
e3 ≡ (0, 0, 1, 0)) and let h(d) ≡ min{� ∈ S : d� > 0} denote the class of the fastest
queried server (regardless of whether this server is idle or busy). The map γ is defined
as follows:

γ ( j, d) �→
s∑

i=1

I {di > 0 and i ≤ j}ei +
(
d −

s∑

i=1

I {di > 0 and i ≤ j}
)
eh(d),

(so that, e.g., when s = d = 8, we have γ (5, (0, 2, 1, 0, 3, 0, 2, 0)) = (0, 6, 1, 0, 1, 0,
0, 0))). Given some j ∈ S̄ and d ∈ D, γ ( j, d) is the unique query mix with the
maximum possible number of queried class-h(d) servers such that the realized value
of the set { j < J : Dj > 0} is the same under events (J , D) = ( j, d) and (J , D) =
( j, γ ( j, d))—thus guaranteeing that αi ( j, d) and αi ( j, γ ( j, d)) are identical due
to the pruning. We note that the fact that the number of class-h(d) queried servers is
maximized is not of any particular significance; rather, themap γ allows us to specify a
unique query mix to act as a “representative” for all query mixes that would be treated
in the same way by the assignment rule under a given realization of the random
variable J . Returning to our optimization problem, observe that we can reduce the
dimensionality of the feasible region by assigning values only to those αi ( j, d) when
(i, j, d) ∈ T where the set T represents a pruned set of triples (i, j, d), for which
each αi ( j, d) can be assigned a distinct nonzero value in formulating an assignment
rule:

T ≡ {
(i, j, d) ∈ S × S̄ × D : i ≤ j, di > 0, ( j ≤ s) �⇒ d j > 0, γ ( j, d) = d

}
.

(18)

Meanwhile, wherever the optimization problem would make reference to αi ( j, d),
we instead write the decision variable αi ( j, γ ( j, d)) as both values are the same.
Furthermore, as defined in Eq. (18), T excludes triples (i, j, d) ∈ S × S̄ × D where
(i) j < i , (ii) di = 0, or (iii) d j = 0 and j �= s + 1. Defining T in such a way allows
us to omit αi ( j, d) for such triples, as all of these values must be 0 (see Sect. 3.3
for details). In order to write the

∑s
i=1 αi ( j, d) = 1 constraints concisely, without

reference to αi ( j, d) for triples (i, j, d) /∈ T , we need a way to specify those ( j, d)

pairs that can form a triple (i, j, d) ∈ T with one or more classes i ∈ S, so we also
introduce the notation P to denote such pairs:

P ≡ {
( j, d) ∈ S̄ × D : (∃i ∈ S : (i, j, d) ∈ T )

}
. (19)

Similarly, in expressing the inner sum in Eq. (9), we avoid making reference to the
same forbidden triples and ensure that j ≥ i+1, by introducing the following notation
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for any fixed (i, d) ∈ S × D:

Ji (d) ≡ { j ∈ {i + 1, i + 2, . . . , s + 1} : (i, j, γ ( j, d)) ∈ T }. (20)

Finally, building upon our analysis in Sect. 4 (including requiring λBi < μi for all
i ∈ S in order to guarantee stability), we have the following optimization problem:

Optimization Problem for the 〈GEN,CID〉 family
Given values of s, d, λ, and μi and qi (both given for all i ∈ S), determine nonnegative values
of the decision variables λIi and λBi (both for all i ∈ S), p(d) (for d ∈ D), and αi ( j, d) (for all
(i, j, d) ∈ T ) that solve the following nonlinear program:

min
1

λ

s∑

i=1

qi

(
(1 − ρi )λ

I
i + ρiλ

B
i

μi − λBi

)

s.t. λIi = λ

qi

∑

d∈D

⎧
⎨

⎩di bi (d)p(d)αi (i, γ (i, d))

di∑

ai=1

(
di − 1

ai − 1

)
(1 − ρi )

ai−1ρ
di−ai
i

ai

⎫
⎬

⎭ (∀i ∈ S)

λBi = λ

qiρi

∑

d∈D

⎧
⎨

⎩p(d)
∑

j∈Ji (d)

b j (d)

(
1 − ρ

d j
j

)
αi ( j , γ (i, d))

⎫
⎬

⎭ (∀i ∈ S)

λBi < μi (∀i ∈ S)
∑

d∈D
p(d) = 1

∑

i∈S:
(i, j,d)∈T

αi ( j, d) = 1 (∀( j, d) ∈ P)

where for all i ∈ S in writing ρi we are denoting the expression λIi /
(
μi − λBi + λIi

)
with

ρ
ds+1
s+1 ≡ 1 for all d ∈ D, and for all j ∈ S̄ in writing b j (d) we are denoting the expression
∏ j−1

�=1

(
λI
�
/
(
μ� − λB

�
+ λI

�

))d�
.

The p(d) values (for all d ∈ D) and the αi ( j, d) values (for all (i, j, d) ∈ T together with

αi ( j, d) = 0 for all (i, j, d) /∈ T ) from an optimal solution specify the querying and assignment

rules associated with an optimal 〈GEN,CID〉 dispatching policy, respectively.

5.2 Optimizing over the Independent and Identically Distributed Querying family

We now turn our attention to the case where QRF = IID as it is simpler to address
IID before the more general (but less general than GEN) IND family. Under the
IID querying rule, the d servers are queried independently according to an identical
probability distribution over the set of server classes S. For any querying rule QR ∈
IID, we can express the probability distribution p over query mixes D in terms of
an auxiliary distribution p̃ over the set of classes S. Specifically, we express p̃ as a
function p̃ : S → [0, 1] that is subject to the constraint

∑s
i=1 p̃(i) = 1, where p̃(i)

is the probability that an arbitrary queried server is of class i . In particular, due to the
structure of querying rules in IID, we query d servers independently according to IID
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according to p̃ upon each arrival, yielding

p(d) =
(

d

d1, d2, . . . , ds

) s∏

i=1

p̃(i)di = d!
s∏

i=1

p̃(i)di

di ! ,

that is, anyQR ∈ IIDmakes independent querieswith queryingmixes D that aremulti-
nomially distributed random vectors. Moreover, such a querying rule QR is uniquely
identified by p̃. The above observations allow us to express the optimization problem
for 〈IID,CID〉 as a modification of the optimization problem for 〈GEN,CID〉 (see
Appendix C of [12]).

5.3 Optimizing over the Independent Querying family

When QR ∈ IID, the function p̃ : S → [0, 1] governed the probability distribution
by which servers were queried: specifically, p̃(i) denoted the probability that any
individual queried server is of class i . We extend this notion to the case where we can
query d servers according to potentially different distributions (i.e., when QR ∈ IND)
as follows: let p̃1, p̃2, . . . , p̃d : S → [0, 1] denote a family of functions such that
p̃�(i) denotes the probability that upon any job’s arrival, the �-th server queried is of
class i .

Remark 6 All servers are queried simultaneously (under all querying rules, includ-
ing those contained IND in particular), and so the order of the queries is irrelevant
(i.e., a querying rule specified by p̃1, p̃2, . . . , p̃d performs indistinguishably from
one specified by p̃′

1 = p̃σ(1), p̃′
2 = p̃σ(2), . . . , p̃′

d = p̃σ(d), for any permutation
σ : {1, 2, . . . , d} → {1, 2, . . . , d}).

We would like to define p(d) in terms of p̃1, p̃2, . . . , p̃d . With this end in mind,
we introduce some additional notation: let

Q ≡ {1, 2, . . . , d} and 	Q ≡ (Q1,Q2, . . . ,Qs), (21)

where each Q� is a subset of Q (i.e., 	Q is an s-tuple of subsets of Q), and let B(d)

denote the set of all s-tuples 	Q that form a partition ofQ such that the �-th entry of 	Q
contains exactly �i elements. That is,

B(d) =
{

	Q : (∀� ∈ S : Q� ⊆ Q, |Q�| = d�),

s⋃

�=1

Q� = Q
}

.

Crucially, B(d) corresponds to the ways that d queries can result in the query mix d.
With the above notation defined, we can now write the following:

p(d) =
∑

	Q∈B(d)

s∏

i=1

∏

u∈Qi

p̃u(i).
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The optimization problem for the 〈IND,CID〉 family of dispatching policies—
presented in Appendix C of [12]—then follows readily from that of 〈GEN,CID〉
family.

5.4 Optimizing over the Deterministic Class Mix family

We now address the case where QRF = DET. For any QR ∈ DET, p is such that
there exists some specifically designated d ∈ D where p(d) = 1 and p(d ′) = 0
for all d ′ ∈ D\{d}. That is, we always query deterministically, so that D = d upon
every job arrival. When attempting to find optimal 〈DET,CID〉 dispatching policies,
we need to evaluate the mean response time under each 〈DQRd,CID〉 dispatching
policy, where DQRd is an individual querying rule in DET that always queries a set
of servers with query mix d (further note that all querying rules in DET are of this
form; hence, we have DET = {DQRd : d ∈ D}). Then, we choose the value of d (and
the corresponding policy AR ∈ CID) that yields the best mean response time. Hence,
the optimization problem for the 〈DET,CID〉 family of dispatching policies consists
of solving |D| optimization subproblems and then comparing the objective values of
these subproblems.While our approach can be seen as a disjunctive nonlinear program
composed of a single objective function on the union of several nonlinear feasibility
regions, one could also approach this optimization problem as a single mixed integer
nonlinear program (MINLP).

Since we need only consider D = d in each subproblem, we can dispense with the
need for the map γ in this setting, however it will be useful to introduce the following
analogues of S, T , P , and Ji (d):

S(d) ≡ {i ∈ S : di > 0} (22)

T (d) ≡ {
(i, j) ∈ S × S̄ : i ≤ j, di > 0, ( j ≤ s) �⇒ d j > 0

}
(23)

P(d) ≡ {
j ∈ S̄ : (∃i ∈ S : (i, j) ∈ T (d))

} = { j ∈ S : d j > 0} ∪ {s + 1} (24)

Ji (d) ≡ { j ∈ {i + 1, i + 2, . . . , s + 1} : (i, j) ∈ T (d)} . (25)

While Eq. (25) may appear to be a redefinition of Ji (d) it is actually consistent with
the earlier definition provided in Eq. (20).

With the above notation defined, we can formulate the optimization problem for
the 〈DET,CID〉 family of dispatching policies, which we present in Appendix C of
[12].

5.5 Optimizing over the Single Random Class family

We first observe that when a dispatching policy’s querying rule QR ∈ SRC, then
assignment decisions under that policy are always among servers of the same class,
so if we further impose that the dispatching policy’s assignment rule AR ∈ CID,
then the assignment decision amounts to sending the job to an idle queried server
(chosen uniformly at random) whenever the query includes such a server and to any
(busy) server (chosen uniformly at random) otherwise. Just as the querying rules in
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the IID family were uniquely specified by some probability distribution over the
server classes, p̃, querying rules in the SRC family are also specified by such a
probability distribution, which we denote by p̂. Specifically, let p̂ : D → [0, 1] be
a distribution that satisfies P(D = dei ) = p̂(i) for all i ∈ S and P(D = d) = 0
for all d ∈ D\{de1, de2, . . . , des}, where dei corresponds to the query mix where
d class-i servers have been queried (i.e., it denotes the vector of length s with all
zero entries, except for an entry of d at position i). In particular, the αi ( j, d) values
are immaterial, and we do not need to optimize over them. This yields the associated
optimization problem provided in Appendix C of [12].

5.6 Optimizing over the Single Fixed Class family

As we have remarked earlier, SFC contains exactly s querying rules. Specifically, we
always query d class-i servers for some fixed i ∈ S. As the querying rule is specified
by the choice of this fixed value of i alone, we can disregard querying probabilities.
Moreover, as all queried servers are of the same class, we can also disregard assignment
probabilities. Hence, optimization amounts to choosing the fixed value of i ∈ S that
minimizes the mean response time. To this end, as in the case whereQRF = DET, we
make use of subproblems (and alternatively could havemade uses of integer variables),
although this time we only have s such subproblems. The associated optimization
problem is presented in Appendix C of [12].

We note that the solution to each subproblem does not depend on the objective
function (although objective function values must be computed to find i∗, the index of
the subproblem with the lowest objective function value). Moreover, each subproblem
will have at most one feasible solution. Essentially, solving each subproblem merely
requires one to solve a systemof twononlinear equations in two constrained unknowns:
λIi ∈ [0,∞) and λBi ∈ [0, μi ).

5.7 Optimization subject to a fixed individual querying rule

We also formulate an optimization rule in order to determine optimal assignment
rules AR ∈ CID given any individual querying rule QR ∈ QRF as specified by
some p : D → [0, 1], as long as that querying rule yields a stable system under
some assignment rule. Since the probability distribution over D is specified, we need
only determine the assignment probabilities. This optimization problem (i.e., the one
associated with 〈QR,CID〉) is presented in Appendix C of [12].

We are particularly interested in the UNI and BR rules, defined by

p(d) =
(

d

d1, d2, . . . , ds

)(
1

sd

)
= d!/

(
sd

s∏

i=1

di !
)
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and

p(d) =
(

d

d1, d2, . . . , ds

) s∏

i=1

(μi qi )
di = d!

s∏

i=1

(μi qi )di

di ! ,

respectively, in accordance with the fact that both are members of the IID family (see
Sect. 5.2). Note that some other specific querying rules—especially those that never
query servers of one or more classes—allow for significant pruning of the space of
assignment rules.

6 Numerical results under Class and Idleness Differentiated
assignment

In this section, we compare the performance of dispatching policies found by numer-
ically solving our optimization problems associated with 〈QRF,CID〉 for various
querying rule families QRF (including the single-rule family QRF = {BR}). In these
comparisons, we will examine both performance (i.e., mean response time) and the
computation time associated with determining the optimal parameters for the querying
and/or assignment rules.

6.1 Parameter settings

We provide numerical results for a variety of parameter settings (i.e., problem
instances), where each parameter setting consists of a choice of s, d, λ, μ1, . . . , μs ,
and q1, . . . , qs . Our choices of λ, s, and d resemble a full factorial design, while
our choices of μ1, . . . , μs and q1, . . . , qs clearly depend on s and are subject to the
normalization constraint

∑s
i=1 μi qi = 1.

Specifically, we examine all combinations of s, d, and λ, where s, d ∈ {2, 3, 4}
and λ ∈ {0.05, 0.10, . . . , 0.95} (although when plotting curves, we instead consider
λ ∈ {0.02, 0.04, . . . , 0.98}). For each (s, d, λ) setting, we then consider one set of
μ1, . . . , μs corresponding to each subset of s−1 elements of {1.25, 1.50, 2, 3, 5}: for
each {R1, R2, . . . , Rs−1} ⊆ {1.25, 1.50, 2, 3, 5}, ordered so that R1 > R2 > . . . >

Rs−1, we let μi = Riμs for each i ∈ S\{s} (i.e., Ri ≡ μi/μs).. That is, in each
parameter setting each server that does not belong to the slowest class runs at a speed
that is 25%, 50%, 100%, 200%, or 400% faster than the speed of the slowest server,
with each parameter setting accommodating s − 1 such speedup factors. The speed of
the slowest server depends on the values of q1, q2, . . . , qs (see below), as follows:

μs =
(
qs +

s−1∑

i=1

Riqi

)−1

.
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Meanwhile, for each (s, d, λ, R1, R2, . . . , Rs−1) setting, we consider the following
(q1, q2, . . . , qs) combinations:

{
(q1, q2, . . . , qs) ∈ Q

s : (∀i ∈ S : 6qi ∈ Z, qi > 0),
s∑

i=1

qi = 1

}
.

That is, we consider all (and only those) combinations (q1, q2, . . . , qs) where we can
view each server class as holding a (nonzero integer) number of “shares”—out of a total
of 6 such shares—with each class being allocated a number of servers proportional
to the number of shares it holds. This methodology for selecting μi and qi values
was chosen to allow for a wide variety of parameter settings while ensuring that in
each setting no class is particularly under- or over-represented nor so much slower or
faster than others. In this way, we avoid extreme parameter settings that render certain
classes (and hence, certain aspects of querying and assignment rules) inconsequential.

Note that there are 3 choices for s, 3 choices for d, 19 choices for λ,
(5
s

)
choices

of speed configurations for each choice of s, and also
(5
s

)
“share” configurations

for each choice of s (that is, 5 choices of each configuration when s = 4 and 10
choices of each configuration when s = 2 or s = 3). Hence, we consider a total of
(3)(19)

(
52 + 102 + 102

) = 12 825 parameter settings. These parameter settings can
be broken down into 1 875 settings for each of the 19 λ values. Alternatively, they can
broken down by the choice of s: 1 425 settings where s = 2, and 5 700 settings each
when s = 3 and s = 4.

6.2 Numerical optimizationmethodology and notation

All of the numerical results we present throughout this section were obtained using
code written in the programming language Julia. We used the JuMP package [5] in
Julia to define our optimization models (see Sect. 5), and we solved these problems
using the interior point optimizer (IPOPT) optimization package [17, 33]. Note that
due to the presence of non-convexity in our optimization problems, IPOPT does not
consistently yield globally optimal solutions. Hence, for each policy family, we should
view the associated “optimal” solution yielded by IPOPT as being the parameters of
a heuristically chosen policy belonging to that family. For further implementation
details and small caveats to the results presented in this section, see Appendix E of
[12].

Now consider an arbitrary querying rule family QRF and an arbitrary assignment
rule family ARF. Let the (admittedly cumbersome) notation

IPOptD〈QRF,ARF〉 ≡ 〈
IPOptQ〈QRF,ARF〉, IPOptA〈QRF,ARF〉

〉

denote the dispatching policy specified by the IPOPT solution to the optimization
problem associated with the 〈QRF,ARF〉 family of dispatching policies (assuming
such an optimization problem exists, has been identified, and can be implemented and
given to IPOPT). That is, for a querying rule familyQRF (e.g.,GEN), we use IPOPT
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to “solve” an optimization problem that involves jointly selecting querying and assign-
ment probabilities, resulting in a querying rule (belonging toQRF), which we denote
by IPOptQ〈QRF,ARF〉, and an assignment rule (belong to ARF), which we denote by
IPOptA〈QRF,ARF〉. Recall that in all of the optimization problems thatwehave proposed
in Sect. 5, we have always consideredARF = CID, so to alleviate the burden imposed
by this cumbersome notation, we can omit the reference to the assignment rule family
whenever we take it to be CID. That is, we take CID as the “default” assignment
rule family and use the notation IPOptDQRF ≡ 〈

IPOptQQRF, IPOptAQRF
〉
, where we

let IPOptQQRF ≡ IPOptQ〈QRF,CID〉 ∈ QRF and IPOptAQRF ≡ IPOptA〈QRF,CID〉 ∈
CID, from which it follows that IPOptDQRF = IPOptD〈QRF,CID〉.

Remark 7 We abuse this notation by adapting it for use with specific policies, rather
than only families, so that, e.g., IPOptDBR ≡ IPOptD{BR}, and IPOptD〈SRC,JSQ〉 ≡
IPOptD〈SRC,{JSQ}〉.

6.3 Comparison of querying rule families with respect toE[T] and optimization
runtime

We proceed to evaluate the performance of the IPOptDGEN, IPOptDIND, IPOptDIID,
IPOptDSRC, and IPOptDBR dispatching policies. We omit examination of the DET
and SFC querying rule families as well as the UNI querying rule, as under many of
our parameter settings, any dispatching policy constructed from such querying rules
yields an unstable system (see Sect. 4.2 on stability and Sect. 6.1 on our parameter
settings). We examine the performance of IPOptDDET across a small set of parameters
(taken from our earlier work in [7]) at the end of this section.

We evaluate the E[T ] values yielded by each of the dispatching policies under con-
sideration, for each of the 12 825 parameter settings described in Sect. 6.1. For each
policy, we then compute the mean andmedian value of bothE[T ] and the optimization
runtime (measured in seconds) across all of our parameter settings. Figure 2 illustrates
the tradeoff between E[T ] and optimization runtime as aggregated across our param-
eter settings. In Fig. 2 (left), we plot the (mean E[T ], mean runtime) pairs associated
with each policy, while in Fig. 2 (right) we plot the analogous pairs for median values.
Before describing Fig. 2 in detail, we introduce one additional policy, motivated by the
surprising observation that both IPOptDIND and IPOptDIID outperform IPOptDGEN
with respect to the mean value of E[T ] across the parameter set, with IPOptDIND
outperforming IPOptDGEN with respect to the analogous median value as well. We
observe this despite the fact that IID ⊆ IND ⊆ GEN, whichmeans that the bestGEN-
driven dispatching policymust perform at least as well as the best IND- and IID-driven
policies; unfortunately, as IPOPT does not consistently find true optimal solutions, the
solution found by IPOPT for a particular family can occasionally outperform the solu-
tion it finds for a more general family. We can construct a new policy to remedy the
somewhat lackluster performance of IPOptDGEN by exploiting the fact that we can
seed IPOPTwith a feasible solution before running it to solve an optimization problem.
Thus far, we have only discussed results which were obtained by running IPOPTwith-
out seeding it with an initial solution, however, IPOPT frequently yields noticeably
better solutions to the optimization problem associated with the 〈GEN,CID〉 family
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Fig. 2 Plots of the (mean E[T ], mean runtime) pairs (left) and (median E[T ], median runtime) pairs (right)
calculated across all parameter settings defined in Sect. 6.1 for six dispatching policies

when seeded with the IPOPT solution associated with the 〈IND,CID〉 (as compared
to the solution yielded by the “unseeded” problem associated with the 〈GEN,CID〉).
We use the notation IPOptDSEED

GEN ≡
〈
IPOptQSEED

GEN, IPOptASEED
GEN

〉
to refer to this new

heuristic dispatching policy (see Appendix E.3 of [12] for details). One can similarly
construct other heuristics for choosing initial values (e.g., seeding the IID optimiza-
tion problem with the solution IPOPT found for the BR optimization problem, and
even using the solution to the aforementioned seeded problem as a seed for the IND
optimization problem, etc.); we extensively explored different heuristics for choosing
initial values (e.g., seeding the IID optimization problem with the solution IPOPT
found for the BR optimization problem); we found that—unlike IPOptASEED

GEN—other
alternative heuristics yielded negligible benefits in comparison to their “unseeded’
counterparts.

Both the mean and the median results indicate that there is a tradeoff between E[T ]
and runtime: families that require a longer runtime to solve the optimization problem
tend to yield lowerE[T ] values.Note, however, that the trends exhibited in Fig. 2 do not
imply that the families have the same orderingwith respect toE[T ] and runtime for any
specific parameter setting; indeed, some trends suggested in Fig. 2(left) are reversed
in Fig. 2(right). For example, while IPOptDIID appears to dominate IPOptDGEN with
respect to both mean measures, IPOptDIID has a higher (i.e., worse) median E[T ]
value than IPOptDGEN.

Overall IPOptDBR and IPOptDSRC feature the lowest runtimes but at the expense
of the worst performance (i.e., they have the highest E[T ] values). The fast runtime
of IPOptDBR can be attributed to the fact that it need only optimize over assignment;
despite arising from the “smallest” of the optimization problems in many respects (see
Table 2), IPOptDSRC features a higher runtime than IPOptDBR. Meanwhile, IPOptDIID
and IPOptDGEN offer an improvement in performance at the cost of additional run-
time. Surprisingly, IPOptDIND has a longer runtime (and as previously discussed,
better performance than) IPOptDGEN despite arising from solving a problem of a
smaller (nominal) size. An examination of the optimization problem associated with
〈IND,CID〉, as presented in Appendix C of [12], provides a potential explanation for
the exceptionally long runtimes associatedwith IPOptDIND: the constraints in this opti-
mization problem with λBi on the left-hand side are very complicated. As previously
noted, IPOptDSEED

GEN achieves the best E[T ] by building off of the strong performance
of IPOptDIND. Of course, this comes at a significant runtime expense, as one must
now solve two optimization problems.
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Fig. 3 E[T ] relative to that of IPOptDSEED
GEN (i.e., E[T ]DP/E[T ]IPOptDSEEDGEN ) as a function of λ for the param-

eter settings where s = d = 3, λ varies over {0.02, 0.04, . . . , 0.98}, (q1, q2, q3) = (1/3, 1/6, 1/2)
and (R1, R2) = (5, 2), yielding (μ1, μ2, μ3) = (2, 4/5, 2/5), for the dispatching policies DP ∈
{IPOptDIND, IPOptDIID, IPOptDSRC, IPOptDBR}

Throughout the entire parameter set, all of the optimization problems ran in well
under one minute; the mean and median runtimes associated with each of the dis-
patching policies examined were under 2 seconds. In practice, these differences in
runtimes are small enough that they would likely not be a significant factor, as this
optimization would only need to be performed once to configure the system. Thus,
while the tradeoff between E[T ] and runtime is of theoretical interest, IPOptDSEED

GEN
represents the best practical choice of dispatching policy among those studied here
when achieving low E[T ] is the foremost goal. On the other hand, if the simplicity or
interpretability of the policy is of value to the system designer, IPOptDIID provides a
reasonable alternative to IPOptDSEED

GEN.
The results in Fig. 2 were aggregated across the entire space of parameter settings;

in Fig. 3, we instead present results for a collection of settings where all parameters are
fixed except forλ. This allows us to provide a direct comparison of howour dispatching
policies perform with respect to their E[T ] values across the spectrum of arrival rates.
We first observe that IPOptDSRC and IPOptDBR each exhibit their best performance in
different ranges of λ values, which provides some insight into the reversed relationship
these policies exhibit when comparing their mean and median E[T ] values over the
entire parameter set. That said, these two policies perform considerably worse than
the other policies examined. Both IPOptDIID and IPOptDIND achieve performance
comparable to IPOptDSEED

GEN, with IPOptDIND indistinguishable from IPOptDSEED
GEN at all

but a small range of λ values.

6.4 The“optimal” dispatching policies found by IPOPT

In the previous subsection, we have evaluated the performance of the dispatching poli-
cies resulting from the optimal solutions found by IPOPTwhen given the optimization
problems associated with the 〈QRF,CID〉 family of dispatching rules under various
querying rule families QRF. In this subsection, we turn to numerically studying the
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Fig. 4 IPOPT optimal dispatching policies s = d = 2. The parameter α1(2, (1, 1)) = 0 in all cases shown

solutions (as found by IPOPT) themselves; that is, we study the best policies found by
IPOPT across our parameter settings, although to facilitate comprehensible visualiza-
tions, we restrict attention to the setting where s = d = 2. We also restrict attention
to those (IPOPT-determined) dispatching policy families that performed best based
on the study from the previous subsection: IPOptDIID, IPOptDIND, IPOptDGEN, and
IPOptDSEED

GEN. We caution that the results presented here may reveal more about the
idiosyncrasies of IPOPT than they do about the “true optimal” policies belong to the
dispatching policy families of interest.
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Figure 4 shows four plots—one for each of the aforementioned families of dispatch-
ing policies. In each plot the optimal policy associated with each parameter setting is
denoted by a single point. Each point’s position in the ternary plot gives the values of
p(2, 0), p(1, 1), and p(0, 2), which collectively describe the policy’s querying rule;
note that p(2, 0) + p(1, 1) + p(0, 2) = 1. Meanwhile, the color or shading of each
point denotes the α1(0, (1, 1)) parameter associated with the policy—in all cases plot-
ted, this single parameter uniquely identifies the assignment rule, as in all such cases
IPOPT reported α1(2, (1, 1)) = 0, and all other assignment rule parameters can be
computed from these two. That is, we find that in all of the optimal policies reported
by IPOPT, jobs are never assigned to busy class-1 servers when an idle class-2 server
has been queried.

Remark 8 In Fig. 4, we see that the lowest values of α1(0, (1, 1)) are associated with
those policies where p(1, 1) = 0; however, such policies are precisely those where
the choice of α1(0, (1, 1)) is immaterial; When we fix p(1, 1) = 0, E[T ] is entirely
insensitive to α1(0, (1, 1)), as it does not matter how we assign jobs under the query
mix (1, 1) if the probability of querying according to such a mix is set to zero.

Upon looking at Fig. 4 we immediately observe the following: (i) all IPOptDIID
policies lie on a “curve” on the ternary plot, (ii) all IPOptDIND policies lie on either a
curve or satisfy at least one of the p(2, 0) = 0 or p(0, 2) = 0 line segments, (iii) all
IPOptDGEN policies line on at least one of the p(2, 0) = 0, p(1, 1) = 0, or p(0, 2) = 0
line segments, and (iv) the IPOptQSEED

GEN policies exhibit qualitatively similar behavior
to that associated with IPOptDIND, although far fewer of the points lie on a curve.

Closer inspection reveals that all of the curves alluded to above are indeed the same.
In fact, this curve is defined by

{
(p(2, 0), p(1, 1), p(0, 2)) =

(
x2, 2x(1 − x), (1 − x)2

)
: x ∈ [0, 1]

}
,

which is precisely the set of querying rules comprising IID when s = d = 2 (i.e.,
this is the feasible set of querying rules for the optimization problem associated with
〈IID,CID〉 when s = d = 2). Meanwhile, with some work, one can show that the
set of querying rules comprised by IND when s = d = 2 corresponds to the region
bounded by the “IID curve” and the lines p(2, 0) = 0 and p(0, 2) = 0 (inclusive).
We find that every querying rule reported as optimal by IPOPT that is contained
within IND—which includes all of the querying rules of the IPOptQSEED

GEN policies—is
specifically contained within the boundary of IND.

The only dispatching policies reported by IPOPT that do not use IND querying
are a subset of the IPOptQGEN policies where p(1, 1) = 0; in fact, such policies
use SRC querying. Meanwhile, the IPOptQSEED

GEN policies are always within IND: it
appears that seeding IPOPTwith the “IND solution” when giving it a “GEN problem”
allows IPOPT to avoid finding dispatching policies using SRC querying in favor
of those using IND querying, ultimately yielding better performance. Moreover, we
observe that very few IPOptDSEED

GEN policies actually lie on the curve (i.e., very few such
policies are in IID); the optimal policies tend to be those where either p(2, 0) = 0
or p(0, 2) = 0. Such querying rules are precisely those that are either deterministic,
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Fig. 5 E[T ] relative to that of IPOptDSEED
GEN (i.e.,E[T ]DP/E[T ]IPOptDSEEDGEN ) as a function of λ for the parame-

ter settingswhere s = 2 and d = 4,λ varies over {0.02, 0.04, . . . , 0.98}, (q1, q2) = (4/5, 1/5), and R1 = 5,
yielding (μ1, μ2) = (25/21, 5/21), for the dispatching policies DP ∈ {JIQ(2, 2), JSQ(2, 2), IPOptDDET}

or “semi-deterministic” in the sense that at least one server of a chosen (fixed) class
i ∈ {1, 2} and determines the class for the remaining query randomly.

We leave it to futurework to determinewhether, how, and towhat extent these obser-
vations can (i) yield results concerning “true optimal” policies and (ii) be generalized
to the cases where s > 2 and/or d > 2.

Remark 9 While we have avoided plotting results for IPOptDBR in the interest of
brevity, we note here that we find two kinds of solutions associated with the opti-
mization problem for IPOptDBR: those where α1(2, (1, 1)) = 0 as in the case of the
policies discussed above, and those where α1(0, (1, 1)) = 1, while α1(2, (1, 1)) > 0.
The latter policies are precisely those where jobs are never assigned to a class-2 server
when a class-1 server has been queried except—and only sometimes—when said
class-2 server is idle and the class-1 server is busy. We conjecture that the need to con-
sider such policies under BR is a result of the fact that BR prohibits any optimization
associated with the querying rule.

6.5 Performance under the Deterministic Class Mix querying rule family

Finally, we study DET in the case where s = 2 and d = 4 by comparing the
performance of IPOptDDET to that of the JIQ(2, 2) and JSQ(2, 2) dispatching policies
studied in [7]. We consider E[T ] under these three policies, normalized to that under
IPOptDSEED

GEN, for all 12 combinations of R1 and (q1, q2) that are studied in Section 5.2
of [7]. All of these 12 combinations yield similar insights; Fig. 5 shows results for
the particular setting in which R1 = 5 and (q1, q2) = (4/5, 1/5) (note that this
parameterization is not a member of the space discussed in Sect. 6.1, rather it is taken
from [7]). The JIQ(2, 2) dispatching policy often performs considerably worse than
IPOptDDET, the performance of which is indistinguishable from IPOptDSEED

GEN except
at the highest load values. However, despite its generally strong performance, there
is no advantage to using the IPOptDDET policy instead of IPOptDSEED

GEN, as IPOptDDET
features a substantially higher mean runtime: across the parameter settings shown in
Fig. 5 (respectively, all of the parameter settings considered in Section 5.2 of [7]),
the mean runtime of IPOptDDET is more than 95% higher (respectively, more than
20% higher) than that of IPOptDSEED

GEN. This high runtime is likely due to the fact that

123



Queueing Systems (2022) 102:431–480 465

IPOptDDET must solve six smaller subproblems, whereas IPOptDSEED
GEN solves only two

(larger) optimization problems. Meanwhile, the queue length-aware JSQ(2, 2) policy
tracks JIQ(2, 2) at low load, but considerably outperforms the other policies, including
IPOptDSEED

GEN, as load approaches 1. This suggests that there is considerable value in
investigating CLD-driven dispatching policies, which we explore in the next section.

Remark 10 The JIQ(2, 2) dispatching policy from [7] would be denoted in our
framework as IPOptDDQR(2,2)

∈ 〈DET,CID〉, recalling that DQRddenotes the query-
ing rule that always queries so that D = d. Note that while JSQ(2, 2) ∈〈
DQR(2,2),CLD\(CID ∪ LD)

〉
fits within our framework, JSQ(2, 2) does not use what

our framework would describe as JSQ assignment, i.e., JSQ(2, 2) �= 〈
DQR(2,2), JSQ

〉
.

Specifically, JSQ(2, 2) is a variant of JIQ(2, 2) that, given a set of queried servers,
assigns an incoming job to the same class that the job would be assigned to under
JIQ(2, 2). However, while JIQ(2, 2) ultimately assigns the job to a server chosen uni-
formly at random among those queried from the selected class, JSQ(2, 2) assigns the
incoming job to a server chosen uniformly at random among those queried servers
with the shortest queue(s) from the selected class.

7 The Class and Length Differentiated family of assignment rules

In this section, we discuss assignment rules in CLD beyond those in the CID family.
After presenting a general structure for CLD assignment rules (Sect. 7.1) and dis-
cussing the difficulty of analyzing dispatching policies using such assignment rules,
we turn our attention to the development of heuristicCLD-driven dispatching policies
(Sect. 7.3). Simulations suggest that our heuristic policies perform favorably relative
to existing dispatching policies presented in the literature (Sect. 7.4). These heuristic
policies allow for length-aware assignment while leveraging our analysis of querying
rules under CID (length-blind) assignment, as presented in the preceding sections.

7.1 Formal presentation of the Class and Length Differentiated family of
assignment rules

We proceed to present a generalization of the CID family of assignment rules to
account for queue lengths (rather than just idle/busy statuses), resulting in the CLD
family of assignment rules. This family encompasses all static and symmetric assign-
ment rules that can observe both the class (i.e., speed) of, and queue length at, each of
the queried servers in assigning a newly arrived job. Throughout this subsection, we
introduce a variety of new notation. To aid the reader, this new notation is summarized
in Table 1.

Remark 11 When we refer to the “queue length” of/at a server, we mean the number
of jobs occupying that server’s subsystem: this includes all jobs currently being served
by the server and all those waiting for service.

Recall that our study of theCID family of assignment rules motivated us to encode
the idle/busy statuses of the queried servers by the random vector A, which takes on
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Table 1 Table of notation for Sect. 7.1 (“r.b.” stands for “realized by”)

A(n)
i r.b. a(n)

i ≡ Number of queried class-i servers with a queue length
of n

A(n) r.b. a(n) ≡ {A(n)
0 , A(n)

1 , . . . , A(n)
s } r.b. {a(n)

0 , a(n)
1 , . . . , a(n)

s }
	A r.b. 	a ≡ {A(0), A(1), . . .} r.b. {a(0), a(1), . . .}
	A ≡

{
	a : ∑s

i=1
∑∞

n=0 a
(n)
i = d

}
; Set of all possible

realizations 	A
α

(n)
i (	a) ≡ Probability that the job is assigned to a class-i server

with n jobs when 	A ≡ 	a
αi (	a) ≡ Probability that the job is assigned to a class-i server

with n∗
i jobs when 	A ≡ 	a

n∗
i ≡ min

{
m ∈ N : a(m)

i > 0
}
; Queue length of the shortest

queue among queried class-i servers

realizations of the form a ≡ (a1, . . . , as) ∈ A ≡ {a : a1 + · · · + as ≤ d}, where ai
is the number of idle class-i servers among the di queried. Analogously, in studying
the CLD family it will be helpful to encode the number of class-i servers of each
possible queue length among the di queried. To this end, for each n ∈ N ≡ {0, 1, . . .},
let A(n) ≡

(
A(n)
1 , A(n)

2 , . . . , A(n)
s

)
be a random vector taking on realizations of the

form a(n) ≡
(
a(n)
1 , a(n)

2 , . . . , a(n)
s

)
∈ A where A(n)

i (respectively, a(n)
i ) is the random

variable (respectively, the realization of the random variable) giving the number of
queried class-i serverswith a queue length ofn. Three observations follow immediately
from these definitions: (i) A(0) = A, (ii) A(n) ≤ D (element-wise) for all n ∈ N, and
(iii)

∑∞
n=0 A

(n) = D.
Now let 	A ≡ {A(0), A(1), . . .}, denote the realizations of this random object

by 	a ≡ {a(0), a(1), . . .}, and denote the set of all such realizations by 	A ≡{
	a : ∑s

i=1
∑∞

n=0 a
(n)
i = d

}
. Each realized aggregate query state can now be fully

described by some 	a ∈ 	A, allowing us to treat d as a derived quantity: d = ∑∞
n=0 a

(n).
Formally, a CLD assignment rule is uniquely specified by a family of functions

α
(n)
i : 	A → [0, 1] parameterized by (i, n) ∈ S × N, where α

(n)
i (	a) denotes the prob-

ability that a job seeing a query with aggregate state 	A = 	a is assigned to a class-i
server with a queue length of n. Clearly, we must have α

(n)
i (	a) = 0 whenever a(n)

i = 0

and
∑s

i=1
∑∞

n=0 α
(n)
i (	a) = 1 for all 	a ∈ 	A.

As an illustrative example, let us see how an assignment rule that opts to ignore
queue length information (apart from idleness information) can be implemented via
such a family of functions. Specifically, let us consider an assignment rule from the
CID family (noting that such an assignment rule is also amember of theCLD family, as
CID ⊆ CLD), defined (as inSect. 4.1) by some family of functionsαi : S̄×D → [0, 1]
parameterized by i ∈ S, where αi ( j, d) denotes the probability that a job is assigned
to a queried class-i server, given that it sees J = j as the class of the fastest idle server
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and a query mix D = d. In this case, letting j ≡ min{� : a(0)
� > 0} (where we again

use the convention that min ∅ ≡ s + 1) we can define α
(n)
i (	a) in terms of αi ( j, d) as

follows:

α
(0)
i (	a) =

{
αi ( j, d) if i = j

0 otherwise
(26)

α
(n)
i (	a) =

⎧
⎪⎨

⎪⎩

a(n)
i αi ( j, d)
∑∞

m=1 a
(m)
i

if i ≤ j

0 otherwise

(∀n ≥ 1). (27)

Equation (26) gives the probability of assigning the job to an idle class-i server, and
Eq. (27) gives the probability of assigning the job to a busy class-i server with n
jobs in its queue. While the first equation is straightforward, the latter becomes clear
by making the following observation: if we ignore queue lengths beyond idle/busy
statuses, once we have chosen to assign the job to a busy class-i server, we choose
one such server at random, and hence, the job is sent to a class-i server with a queue
length of n with probability a(n)

i

/∑∞
m=1 a

(m)
i .

Now observe that if one opts to make full use of queue length information, then
whenever one assigns a job to a class-i server it is naturally favorable to assign the
job to the class-i server with the shortest queue among those queried. If we prune
the space of CLD assignment rules in this fashion (which would leave out the CID
assignment rules), then we can instead uniquely specify assignment rules by a family
of functions αi : 	A → [0, 1] that are parameterized only by i ∈ S (rather than also

being parameterized by n ∈ N). In this case, letting n∗
i ≡ min

{
m ∈ N : a(m)

i > 0
}

(i.e., letting n∗
i be the queue length of the shortest queue among queried class-i servers)

for each i ∈ S (with n∗
i ≡ ∞ whenever di = 0), we can express (the original) α

(n)
i (	a)

in terms of (the new) αi (	a) as follows:

α
(n)
i (	a) =

{
αi (	a) if n = n∗

i

0 otherwise
.

7.2 Examples of Class and Length Differentiated assignment rules

Two examples of assignment rules in CLD\CID that we can specify using families
of functions αi : 	A → [0, 1] (where we again use n∗

i to denote the queue length of the
shortest queue among queried class-i servers) include JSQ and SED.

Remark 12 When we refer to JSQ and SED, we are referring to just the assignment
rules, rather than the traditional JSQ and SED dispatching policies studied in the lit-
erature in small scale settings, or the JSQ-d and SED-d dispatching policies, which in
our framework are referred to as the 〈UNI, JSQ〉 and 〈UNI, SED〉 dispatching policies,
respectively. Moreover, note that JSQ is actually a member of the LD family—a sub-
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family of CLD that allows for leveraging queue length information, but is blind to
server classes (i.e., speeds).

Wediscuss these two rules (i.e., JSQ and SED) in greater detail—togetherwith a third
assignment rule in CLD\CID, Shortest Expected Wait (SEW), which we introduce
here—below:

– Join the Shortest Queue (JSQ) is an individual assignment rule that is a member
of the LD family (and therefore also the CLD family) that assigns the job to a
queried server (chosen uniformly at random) among those with the shortest queue
(regardless of their class). It is specified by

αi (	a) = a
(n∗

i )
i

∏s
�=1 I {n∗

i ≤ n∗
�}

∑s
i ′=1 a

(
n∗
i ′
)

i ′
∏s

�=1 I
{
n∗
i ′ ≤ n∗

�

}
.

– Shortest Expected Delay (SED) is an individual assignment rule that is a member
of the CLD family that assigns the job to a queried server (chosen uniformly at
random) among those on which the job would complete soonest in expectation
under the assumption of First Come First Serve (FCFS) scheduling (regardless of
the actual scheduling rule being implemented). By observing that the expected
delay experienced by a job (under FCFS scheduling) that is assigned to a class-i
server with n other jobs already in its queue is (n + 1)/μi , we find that the SED
assignment rule is specified by

αi (	a) =
a
(n∗

i )
i

∏s
�=1 I

{
n∗
i +1
μi

≤ n∗
�+1
μ�

}

∑s
i ′=1 a

(
n∗
i ′
)

i ′
∏s

�=1 I
{
n∗
i ′+1
μi ′

≤ n∗
�+1
μ�

} .

– Shortest Expected Wait (SEW) is an individual assignment rule that is a member
of the CLD family that assigns the job to a queried server (chosen uniformly at
random) among those on which the job would enter service soonest in expectation
under the assumption of First Come First Serve (FCFS) scheduling (regardless of
the actual scheduling rule being implemented). Unlike SED, SEW does not account
for the expected size of the arriving job, 1/μi . By observing that the expected
waiting time until entering service experienced by a job (under FCFS scheduling)
that is assigned to a class-i server with n other jobs already in its queue is n/μi ,
we find that the SEW assignment rule is specified by

αi (	a) =
a
(n∗

i )
i

∏s
�=1 I

{
n∗
i

μi
≤ n∗

�

μ�

}

∑s
i ′=1 a

(
n∗
i ′
)

i ′
∏s

�=1 I
{
n∗
i ′

μi ′
≤ n∗

�

μ�

} .

Remark 13 Our nomenclature is perhaps imperfect, as delay is sometimes used to refer
to time in queue, but here we are using delay (in the name of SED—which we inherit
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from the literature) to refer to the time in system and wait (in the name of SEW) to
refer to the time in queue.

We also introduce a variant of each of the above policy that breaks “ties” in favor
of faster servers: (i) JSQ	, (ii) SED	, and (iii) SEW	 act like the (i) JSQ, (ii) SED, and
(iii) SEW assignment rules, except jobs are always assigned to one the fastest servers
(chosen uniformly at random) among those queried servers that have the (i) shortest
queue, (ii) the shortest expected delay (i.e., at which the job would experience the
shortest expected response time), and (iii) the shortest wait (i.e., at which the job
would experience the shortest time in queue), respectively. Note that while JSQ ∈ LD,
JSQ	 ∈ CLD\LD, as JSQ	 makes use of class information in breaking ties between
queried servers with the same queue length. These rules are specified by the following:

αi (	a) =
i−1∏

�=1

I {n∗
i < n∗

�}
s∏

�=i+1

I {n∗
i ≤ n�}. (JSQ	)

αi (	a) =
i−1∏

�=1

I

{
n∗
i + 1

μi
<

n∗
� + 1

μ�

} s∏

�=i+1

I

{
n∗
i + 1

μi
≤ n∗

� + 1

μ�

}
(SED	)

αi (	a) =
i−1∏

�=1

I

{
n∗
i

μi
<

n∗
�

μ�

} s∏

�=i+1

I

{
n∗
i

μi
≤ n∗

�

μ�

}
(SEW	).

7.3 A heuristic for finding strong dispatching policies

The analysis of general assignment rules in the CLD family introduces intractability
issues that wewere able to avoid in our analysis of theCID family of assignment rules.
There are two key challenges for identifying strong dispatching policies with assign-
ment rules in CLD\CID. First, while the αi functions designating the CID policies
had a finite domain (A × D, and after subsequent pruning S̄ × D), those functions
specifying assignment rules for CLD policies—even with the pruning introduced in
Sect. 7.1—have an infinite domain ( 	A). Hence, the CLD assignment rules span an
infinite dimensional space, unlike the finite-dimensional polytopes spanned by their
CID counterparts (see Appendix D of [12] for details); the former generally precludes
straightforward optimization, while the latter facilitates it.

The second challenge associated with identifying strong dispatching policies with
assignment rules that take queue lengths into account is the lack of exact performance
analysis for most dispatching policies in CLD\CID. Thus, even if we could solve an
infinite-dimensional optimization problem (i.e., even if we could overcome the first
challenge), it is challenging to formulate the objective function for such anoptimization
problem.

We attempt to jointly overcome these challenges by populating a roster of heuristic
dispatching policies designed based on the CID-driven policies of Sects. 3–6. In the
next subsection, we show (via simulation) that many of these policies perform well
relative to the aforementioned CID-driven policies.

123



470 Queueing Systems (2022) 102:431–480

We address the first challenge (i.e., the infinite dimensional space spanned by
the CLD assignment rules) by limiting ourselves to the example assignment rules
discussed in Sect. 7.2: JSQ, SED, SEW, JSQ	, SED	, and SEW	. Note that these are
individual assignment rules, rather than assignment rule families, which obviates the
need for optimizing continuous probabilistic parameters.

One hopes that even without sophisticated fine-tuned probabilistic parameters, the
greedy SED and SEW assignment rules (with or without class-based tie-breaking) still
manage to yield stronger performance than the length-blind CID-driven dispatching
policies—at least when paired with a judiciously chosen querying rule.Meanwhile, by
studying JSQ, we can assess the extent to which queue-length information can lead to
strong performance even in the absence of heterogeneity-awareness in the assignment
decision.

The second challenge (i.e., the lack of performance analysis as a basis for optimiza-
tion), then, reduces to the problem of choosing a querying rule to use in conjunction
with our six chosen assignment rules.We propose three ideas for choosing an appropri-
ate querying rule—ultimately, each approach will add additional dispatching policies
to our roster.

The first idea for choosing a querying rule is to use the same approach that we are
taking on the assignment side. That is, we can limit ourselves to one (or some small
number of) individual querying rule(s). Of the two specific individual querying rules
discussed in this paper, UNI does not guarantee stability, while BR does (see Sect. 4.2
for details). For this reason, we add the following six dispatching policies to our roster:
〈BR, JSQ〉, 〈BR, SED〉, 〈BR, SEW〉, 〈BR, JSQ	

〉
,
〈
BR, SED	

〉
, and

〈
BR, SEW	

〉
.

The remaining two ideas involve leveraging the diversity of querying rules available
within the families studied throughout this paper, as it is unnecessarily restrictive
to only consider dispatching policies that involve no optimization (i.e., that involve
combining a specific individual querying rule with a specific individual assignment
rule, as above). The broadest querying rule family that we have studied is, of course,
GEN; unfortunately, analyzing exact mean response times under, e.g., 〈GEN, JSQ〉
and 〈GEN, SED〉 appears to be intractable.

Our second idea presents oneway to overcome this tractability limitation:we restrict
attention to the SRC family of querying rules, where one selects a class at random
(according to some fixed distribution) upon the arrival of each job and then queries
d servers of that class. SRC querying eliminates the possibility of needing to make
assignment decisions between servers running at different speeds, meaning that pair-
ing SRC with any of our six individual assignment rules yields the same dispatching
policy; we will refer to this single policy as 〈SRC, JSQ〉. Furthermore, because assign-
ment decisions are always made among servers of the same speed, the analysis of
〈SRC, JSQ〉 reduces to that of s independent homogeneous systems under JSQ. This
exact analysis allows us to use IPOPT to find the IPOptD〈SRC,JSQ〉 dispatching policy,
which we add to our roster of dispatching policies.

Remark 14 Asnoted above, the analysis of 〈SRC, JSQ〉 reduces to that of s independent
homogeneous systems under the 〈UNI, JSQ〉 dispatching policy (referred to in the
literature as JSQ-d). The mean response time in such homogeneous systems was
analyzed exactly in [19, 32]. We then rely on IPOPT to determine the “optimal” p̂(i)
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parameters for i ∈ S (i.e., the probability of querying each single class i ; see Sect. 5.5).
We further note that 〈SRC, JSQ〉 was previously studied in the case of s = 2, under
the Processor Sharing (PS) scheduling discipline, in [20].

Our third idea is to use a novel heuristic that leverages our previous study of
〈QRF,CID〉 dispatching policies from Sects. 3–6. Our heuristic constructs a dis-
patching policy by combining an individual querying rule found by IPOPT and
any one of our six individual assignment rules. Specifically, the heuristic uses the
IPOptQSEED

GEN querying rule (i.e., the querying rule yielded by the IPOPT solution
to the optimization problem associated with 〈GEN,CID〉, seeded with the IPOPT
solution for 〈IND,CID〉). Note that our choice of querying rule (i.e., IPOptQSEED

GEN)
is not contingent on the choice of assignment rule, as tractability necessitates fore-
going any kind of joint optimization. To this end, we complete our roster with the

following six policies:
〈
IPOptQSEED

GEN, JSQ
〉
,
〈
IPOptQSEED

GEN, SED
〉
,
〈
IPOptQSEED

GEN, SEW
〉
,

〈
IPOptQSEED

GEN, JSQ	
〉
,
〈
IPOptQSEED

GEN, SED	
〉
, and

〈
IPOptQSEED

GEN, SEW	
〉
.

7.4 Simulation-driven performance evaluation

We simulate the 〈BR, JSQ〉, 〈BR, SED〉,
〈
IPOptQSEED

GEN, JSQ
〉
, and

〈
IPOptQSEED

GEN, SED
〉

dispatching policies in a system with k = 3000 servers under the same collection of
parameter settings studied in Fig. 3 in Sect. 6.3. We simulate 10000000 arrivals to the
system and record the observed response time for each. We then average these values
(discarding the first 1000000 to allow the system to “reach a steady state” where the
running average response time was observed to stabilize) to obtain a E[T ] value under
each policy at each value of λ. We omit results for λ ∈ {0.92, 0.94, 0.96, 0.98} as
the observed variance of response times across successive runs exceeded 1% of the
mean in these cases. Running longer simulations with more arrivals could reduce the
variance in these cases, but doing so would have been prohibitively expensive in terms
of the simulation runtime.

In Fig. 6, we plot the simulated E[T ] of each of the above dispatching policies—
as well as the computational (non-simulated, based on the assumption where k →
∞) results for IPOptDIID and IPOptD〈SRC,JSQ〉—normalized by the E[T ] value

IPOptDSEED
GEN ≡

〈
IPOptQSEED

GEN, IPOptASEED
GEN

〉
as a function of λ. We examined a num-

ber of other parameter settings and chose this parameter setting in order to make the
trends more salient, although qualitatively similar results are exhibited across most of
the parameter settings observed.

We observe that at low values of λ, the BR-driven policies perform poorly, because
they occasionally query no servers of the fastest class, even though under such light
traffic one would like to discard all but the fastest servers. These policies continue to
be the worst performers—as, in addition to using slow servers, queues begin to build
up at these servers—until a certain point where the gap between these policies and
the others begins to close. Meanwhile, in this low-λ regime, all of the other policies
(including the normalizing policy, IPOptDSEED

GEN, which does not make use of queue
length information) perform near-identically, because all of them query essentially
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only the fastest servers, and most of these servers are idle, rendering the assignment
rule immaterial.

At higher λ, we enter an “assignment-driven regime,” where all of our CLD-based
policies outperform the CID-based IPOptDSEED

GEN policy. We call this an “assignment-
driven regime” because the performance of the policies become differentiated from
one another primarily on the basis of their assignment rules. That is, even though,

e.g., IPOptDSEED
GEN ≡

〈
IPOptQSEED

GEN, IPOptASEED
GEN

〉
and

〈
IPOptQSEED

GEN, SED
〉
use the same

querying rule—which is optimized for use with CID assignment—the latter achieves
better performance because the advantage of CLD-based assignment outweighs the
benefit of jointly optimizing the querying and assignment rules. The existence of such
a regime is a result of the fact that, in heavy traffic, all querying rules that maintain the
system’s stability must result in similar λBi values, meaning that dispatching policies
that stabilize the system are distinguished from one another primarily in terms of their
assignment rules.

Two of the dispatching policies under consideration emerge as the consistently

strongest performers:
〈
IPOptQSEED

GEN, SEW	
〉
and IPOptD〈SRC,JSQ〉. It may appear sur-

prising that
〈
IPOptQSEED

GEN, SEW	
〉
consistently outperforms its counterparts that make

use of SED or SED	. It turns out that (assuming a judiciously chosen querying rule) it
is crucial to make use of idle queried servers whenever possible; unlike SED and SED	,
SEW and SEW	 never send jobs to busy servers when an idle server has been queried.

The strong performance of
〈
IPOptQSEED

GEN, SEW	
〉
also highlights the value of our anal-

ysis of CID-based dispatching policies: even though such length-unaware policies do
not themselves necessarily achieve the best performance (especially at high λ), we see
that the CID-based optimization of the querying rule allows for the development of
considerably stronger CLD-based policies. Such policies are likely to be difficult to
discover using, e.g., a grid search approach.

Remark 15 In fact, the best-performing
〈
QR, SEW	

〉
policies found by a simulation-

driven grid search (over QR ∈ GEN) performed no better than
〈
IPOptQSEED

GEN, SEW	
〉
.

We performed this grid search to validate the performance of our heuristic policies,
but, even with a fairly coarse search, this took on the order of an hour for a single value
of λ, while one can obtain a better performing IPOptQSEED

GEN policy in mere seconds by
leveraging our optimization problems rather than simulations. Our experience leads
us to conclude that the high dimensionality of the GEN family renders such searches
poorly suited for practice.

Meanwhile, IPOptD〈SRC,JSQ〉 also exhibits consistently strong performance across
the range of λ values. We can attribute its excellent performance to the fact that—
unlike the other CLD-based policies under consideration—IPOptD〈SRC,JSQ〉 features
a querying rule that is optimized for use with its own assignment rule, rather than for
use with a CID assignment rule.
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8 Conclusion

This paper provides a comprehensive framework for dispatching in scalable systems in
the presence of heterogeneous servers, by examining two separate components of the
dispatching policy: the querying rule and the assignment rule. We highlight tradeoffs
associated with the choice of each rule: less restrictive families of querying rules allow
for lower mean response times at the cost of increased solution runtime. Meanwhile,
some assignment rules lend themselves to tractable analysis, while others boast better
performance (insofar as observed from simulations). Moreover, at some system loads,
both the querying and assignment decision can be crucial, while at more extreme
loads, one decision plays a more dominant role over the other (subject to stability
constraints).

Our framework illuminates several potentially fruitful areas of future work. First,
this paper restricts attention to symmetric and static querying and assignment rules.
There has been little study of asymmetric rules (of either kind) in the literature when
all jobs are ex ante identical (i.e., when dispatching is size blind and all jobs are equally
important). Yet we believe that the explicit and separate consideration of—and study
of the interaction between—querying and assignment rules suggests how asymmetry
might be exploited to develop superior dispatching policies even when jobs are ex
ante identical. A judiciously chosen asymmetric assignment rule may be able to syn-
ergistically exploit the asymmetry introduced by the querying rule. Meanwhile, future
research could allow for dynamic, rather than merely static, querying and/or assign-
ment rules, permitting the incorporation of round-robin-like dispatching decisions into
our framework, which would necessitate novel analysis. Another direction for future
work involves generalizing our framework to heterogeneous systems with multiple
dispatchers, as considered in [29, 39]. Such a generalization likely would require a
different approach for selecting policy parameters, as each dispatcher possesses only
a partial view of the system’s arrival process.

While this paper presents a comprehensive examination of querying ruleswithin the
space restricted by the aforementioned assumptions, the bulk of our analysis focused
on the CID family, where assignment rules eschew making decisions on the basis of
detailed queue length information in favor of idleness information. The performance
analysis of evenCLD-based dispatching policies remains an open problem, and while
the explicit analysis of the set of all CLD assignment rules (in conjunction with
querying rules coming from, sayGEN) may prove intractable, we anticipate that many
policies incorporating more detailed—if still restricted—queue length information are
amenable to analysis. Moreover, we imagine that many such policies may outperform
the CID-driven dispatching policies studied in this paper.

Finally, there remain open problems on the theoretical front. For example, through-
out our analysis asymptotic independence remains an assumption (although one that
is validated by simulation) for which future work may provide a universal rigorous
justification (as past work has for more restricted special cases of our framework).
There is also ample room for optimization theory to shed further light on the structure
of the optimization problems presented in this work.
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A Appendix: Tables of notation

See Tables 2, 3, 4 and 5.

Table 2 Querying rule and policy abbreviations

Querying rule families

DET ≡ Deterministic Class Mix

GEN ≡ General Class Mix

IND ≡ Independent Querying

IID ≡ Independent and Identically Distributed Querying

QRF ≡ Generic notation for an arbitrary querying rule family

SFC ≡ Single Fixed Class

SRC ≡ Single Random Class

Individual querying rules

BR ≡ Balanced Routing querying rule

DQRd ≡ Individual querying rule in DET that always queries according to class mix d

IPOptQ〈QRF,ARF〉 ≡ Querying rule used by the “optimal” policy in 〈QRF,ARF〉 found by IPOPT
IPOptQQRF ≡ Abbreviated notation for IPOptQ〈QRF,CID〉
IPOptQSEED

GEN ≡ Querying rule used by the IPOptDSEED
GEN dispatching policy

QR ≡ Generic notation for an arbitrary individual querying rule

UNI ≡ Uniform Querying
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Table 3 Assignment rule and policy abbreviations

Assignment rule families

ARF ≡ Generic notation for an arbitrary assignment rule family

CD ≡ Class Differentiated

CID ≡ Class and Idleness Differentiated

CLD ≡ Class and Length Differentiated

ID ≡ Idleness Differentiated

LD ≡ Length Differentiated

Individual assignment rules

AR ≡ Generic notation for an arbitrary individual assignment rule

IPOptA〈QRF,ARF〉 ≡ Assignment rule used by the “optimal” policy in 〈QRF,ARF〉 found by IPOPT
IPOptAQRF ≡ Abbreviated notation for IPOptA〈QRF,CID〉
IPOptASEEDGEN ≡ Assignment rule used by the IPOptDSEED

GEN dispatching policy

JSQ ≡ Join the Shortest Queue assignment rule

JSQ	 ≡ Variant of JSQ where ties are broken in favor of faster classes

ND ≡ Non-Differentiated

SED ≡ Shortest Expected Delay assignment rule

SED	 ≡ Variant of SED where ties are broken in favor of faster classes

SEW ≡ Shortest Expected Wait assignment rule

SEW	 ≡ Variant of SEW where ties are broken in favor of faster classes

Table 4 Dispatching rule and policy abbreviations

Dispatching Policy Families

〈QRF,ARF〉 ≡ Dispatching policy family using QRF querying and
ARF assignment

〈QRF,AR〉 ≡ Disp. policy family using QRF querying with the
individual AR assignment rule

〈QR,ARF〉 ≡ Disp. policy family using the individual QR querying
rule with ARF assignment

DPF ≡ Generic notation for an arbitrary dispatching policy

Individual dispatching policies

〈QR,AR〉 ≡ Dispatching policy using the QR querying rule and AR
assignment rule

DP ≡ Generic notation for an individual dispatching policy

IPOptD〈QRF,ARF〉 ≡ “Optimal” dispatching policy in 〈QRF,ARF〉 found by
IPOPT

IPOptDQRF ≡ Abbreviated notation for IPOptD〈QRF,CID〉
IPOptDSEED

GEN ≡ Variant of the IPOptDGEN dispatching policy, where the
associated optimization problem is “seeded” with the
parameters of the IPOptDIND policy
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Table 5 List of notations

αi (a, d) ≡ Probability that the job is assigned to a class-i server
when A = a and D = d

αi ( j, d) ≡ Notation for αi (a, d) when A = a is such that the
fastest idle queried server belongs to class j

A ≡ (A1, . . . , As ); random vector representing the number
of queried idle servers of each class

Ai ≡ Random variable representing the number of queried
idle class-i servers

A ≡ {a : a1 + · · · + as ≤ d}; Set of all possible values of the
random vector A (given a fixed d)

a ≡ (a1, . . . , as ); realization of the random vector A

ai ≡ Realization of the random variable Ai
Bi ≡ Busy period duration at a class-i server

bi (d) ≡ ∏i−1
�=1 ρ

d�
�
; probability that all queried servers faster

than those of class-i in are busy

d ≡ Total number of servers to be queried

D ≡ (D1, . . . , Ds ); random vector representing the number
of queried servers of each class

Di ≡ Random variable representing the number of queried
class-i servers

D ≡ {d : d1 + · · · + ds = d}; set of all possible values of the
random vector D (given a fixed d)

d ≡ (d1, . . . , ds ); realization of D representing the class mix

di ≡ Realization of Di representing the number of class-i
servers in the query

γ ( j, d) ≡ Mapping where αi ( j, d) = αi ( j, γ ( j, d)) under our
assignment rule pruning for all (i, j, d)

h(d) ≡ min{� ∈ S : d� > 0}; the fastest class included in a
query when D = d

J ≡ min{ j ∈ S : A j > 0} (with min ∅ ≡ s + 1); class of the
fastest idle queried server

Ji (d) ≡ Set of classes j > i for which (i, j, γ ( j, d)) ∈ T
k ≡ Total number of servers

ki ≡ Number of class i servers for i ∈ S
λ ≡ Overall mean arrival rate to a server

λi ≡ Mean arrival rate to a class-i server

λBi ≡ Mean arrival rate to a busy class-i server

λIi ≡ Mean arrival rate to an idle class-i server

μi ≡ Speed of a class-i server

P ≡ Set of ( j, d) pairs that can form a triple with some
i ∈ S so that (i, j, d) ∈ T

P(d) ≡ Set of server classes j that can form a triple with d and
some i ∈ S so that (i, j, d) ∈ T

p(d) ≡ P(D = d); the probability that D = d; the function p(·)
uniquely specifies the querying rule
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Table 5 continued

Q ≡ {1, 2, . . . , d}; set of indices for each queried server in a
query

qi ≡ ki /k; proportion of servers which belong to class i for
i ∈ S

ρi ≡ Fraction of time a class-i server is busy

Ri ≡ μi /μs ; speed of class-i servers normalized by that of
the slowest (i.e., class-s) servers

rBi (d) ≡ Probability that a busy queried tagged class-i server is
assigned the job when D = d

r Ii (d) ≡ Probability that an idle queried tagged class-i server is
assigned the job when D = d

s ≡ Number of server classes

S ≡ {1, . . . , s}; set of server class indices
S̄ ≡ {1, . . . , s + 1}; set of all possible values for the random

variable J

S(d) ≡ {i ∈ S : di > 0}; Indices of server classes included in
the query

T ≡ Set of triples (i, j, d) for which each αi ( j, d) can take a
distinct value in our pruning

T (d) ≡ Set of pairs (i, j) (given d) for which each αi ( j, d) can
take a distinct value in our pruning

T ≡ Response time of a job (not conditioned on the class of
the server on which the job runs)

Ti ≡ Response time of a job that runs at a class-i server
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