
Noname manuscript No.
(will be inserted by the editor)

The Cost of Collaboration

Kristen Gardner · Rhonda Righter

Received: date / Accepted: date

Abstract Multi-class multi-server systems, in which each job class can be
served by a subset of servers, are common in a wide variety of applications. In
such systems, a key question is whether to collaborate, allowing a job to be in
service on multiple servers simultaneously, or not to collaborate. For systems
with redundancy and exponential service times, this question is equivalent to
the question of whether to cancel copies of a job once a copy starts service
or once a copy completes service. While the collaborative and noncollabora-
tive systems have been well-studied in steady-state, existing results have not
allowed for a comprehensive comparison of performance in the two systems.
In this paper, we use a combination of steady-state analysis and sample-path
arguments to study the costs and benefits of collaboration. While intuition
says that collaboration should yield substantial benefits when service times
are not correlated, we find that, surprisingly, this is not the case. In systems
that exhibit symmetry among servers or job classes, we can construct coupled
sample paths so that collaboration indeed always outperforms noncollabora-
tion. However, in all systems the benefit of collaboration is limited: we show
that on sample paths with the same arrival and service processes, there is an
upper bound on this benefit, in terms of the number of jobs in system. On the
other hand, collaboration can be arbitrarily worse than noncollaboration on
sample paths with the same input processes. Ultimately, both in steady-state
and sample-path-wise, the two systems typically achieve similar performance,

K. Gardner
Department of Computer Science
Amherst College
E-mail: kgardner@amherst.edu

R. Righter
Department of Industrial Engineering and Operations Research
University of California, Berkeley
E-mail: rrighter@berkeley.edu

2 Kristen Gardner, Rhonda Righter

indicating that collaboration is never a big win and that, in many real-world
systems, noncollaboration may be the better choice.

1 Introduction

Multi-class multi-server queueing models, in which each server is capable of
processing only a subset of the possible job classes, have received a great deal
of attention in the recent literature because of the breadth of applications of
such models. For example, in large computing systems, data locality and server
configurations may restrict the set of servers on which a job can run, or a job
may be routed to multiple servers as a form of straggler mitigation to improve
response time. In computing and other networks, jobs arriving to a node can
be routed to nearest neighbors. In manufacturing and service systems with
human operators, operators may be trained to handle different types of jobs,
and they may have different levels of training.

There are two variants for serving jobs in these flexible-job, flexible-server
systems: the collaborative model, in which a job can be in service at multiple
servers simultaneously, and the noncollaborative model, in which a job can en-
ter service on only one server. Both variants are of practical interest, as each is
appropriate for modeling different applications. In call centers with skill-based
routing, in which different agents are trained to handle different types of calls,
the noncollaborative model is appropriate because one customer cannot be on
the line with multiple agents simultaneously. Similarly, manufacturing systems
that use worker cross training and work sharing to increase efficiency are some-
times best modeled by the noncollaborative model; one example of this setting
is zone-based cross training in assembly lines. In contrast, systems such as re-
gional organ transplant waitlists are best captured by the collaborative model;
here, being “in service” corresponds to being next in line to receive an organ,
and a patient can be in service in multiple geographical regions’ waitlists at
the same time. But in yet other applications, whether or not to collaborate is
a design choice. For example, in some systems with human operators it may
be possible for operators to work together to accomplish a task, and whether
or not to allow this is a design choice. Our goals in this paper are to identify
the circumstances under which collaboration is beneficial in such systems, and
to characterize the benefit or cost of collaboration.

Our problem can also be viewed as a dispatching problem. For certain
symmetric systems, joining the shortest of two randomly selected compatible
queues has been shown to perform almost as well as choosing the shortest
among all compatible queues [24]. An alternative dispatching rule, common
in large cloud computing systems, is to send redundant copies of jobs to all
compatible queues, or to a randomly chosen subset of compatible queues of
size d. Here, we have a choice of whether to collaborate, allowing the job to
run on multiple servers and cancelling all extra copies as soon as the first copy
completes service, or not to collaborate, cancelling all extra copies as soon as
the first copy starts service on some server. The Cancel-on-Start variant of re-

The Cost of Collaboration 3

dundancy allows us to implement JSW (join the smallest work, or least waiting
time), without knowing job sizes. This is equivalent to having a single FCFS
(first-come-first-served) queue with noncollaborative service. (See, e.g., [1,3,
9].) An example in which Cancel-on-Complete has been shown to be helpful is
in volunteer desktop grids for scientific computing (e.g., BOINC.Berkeley.edu
or foldingathome.org). Here multiple copies of the same job run in the back-
ground on different independent volunteer systems until the output of one
of them is sent back to the system controller. Again, our goal is to identify
settings in which Cancel-on-Complete (i.e., collaboration) outperforms Cancel-
on-Start (i.e., noncollaboration), and vice versa, assuming exponential service
times.

In some cases, the relative performance of collaboration and noncollabora-
tion is known or intuitively clear, especially when service times are exponential
and i.i.d., which is the setting we consider in this paper. For example, collabo-
ration and noncollaboration have the same stability region, assuming Poisson
arrivals, exponential services, and service is FCFS [2,13]. In this paper, we have
two metrics of interest: number of jobs in system and response time (the time
from when a job arrives to the system until it completes service), the means
of which are of course related through Little’s Law. Intuitively, it seems that
collaboration should always lead to lower response times and queue lengths
because the collaborative system always keeps servers busy when there is com-
patible work in the system, whereas in the noncollaborative system servers may
idle even if a compatible job is present. In some cases, this intuition is accurate.
For example, if there is a single job class that can be served on all servers, then
the collaborative system is equivalent to an M/M/1 queue with rate equal to
the sum of the individual service rates. In contrast, the noncollaborative sys-
tem is equivalent to an M/M/M system with M parallel servers. In this case,
collaboration is easily seen to be better in terms of response time. Similarly,
in light traffic (in the limit as the total arrival rate goes to zero), collaboration
has lower mean response time because, in this regime, with high probability
there is at most one job in the system, and if that job is compatible with
multiple servers then its response time will be lower under collaboration. In
addition, it has been observed numerically that in the redundancy(d) model,
in which each arriving job is replicated to d randomly chosen homogeneous
servers, Cancel-on-Complete (collaboration) leads to lower steady-state mean
response times than Cancel-on-Start (noncollaboration) [9]; we prove that this
is true for all parameter values and for appropriately coupled sample paths.
In general, however, we will see that the story is more complex: collaboration
can be worse than noncollaboration, and it is never much better.

1.1 Challenges and Contributions

We begin by considering the collaborative and noncollaborative systems in
steady state. For both systems, under FCFS scheduling, the stationary distri-
bution of the queue state satisfies a product form [13,17,28]. In principle, the

4 Kristen Gardner, Rhonda Righter

explicit product forms could be evaluated to determine the range of parameters
for which collaboration yields lower mean number of jobs or mean response
time. In practice, aggregating states to go from the stationary distribution
to mean performance metrics is challenging. For the collaborative model, the
stationary distribution only yields closed-form results for aggregate perfor-
mance metrics in a few particular system structures, mostly notably “nested”
systems [15] and “line” systems [11]. For the noncollaborative model, closed-
form aggregate results have been elusive even in nested systems because of
the need to compute “matching probabilities,” the probabilities that a job of
a particular class runs on each compatible server, and probabilities for various
configurations of idle and busy servers.

– We derive, for the first time, closed-form expressions for the steady-state
distributions and means of per-class response times and number of jobs in
the noncollaborative model, for a small system called the W model that
has three classes of jobs and two servers.

Our findings for the W model in steady state reveal that collaboration
is not always better; indeed, it can be much worse than noncollaboration in
terms of the number of jobs in the system.

But the W model is just one small example of a flexible-job, flexible-server
system, and even for this simple model, the resulting expressions are compli-
cated. Furthermore, the steady-state results for the noncollaborative system
require restrictions on the system dynamics: to obtain a product form sta-
tionary distribution one must either keep track of the order in which servers
become idle and assign arriving jobs that find multiple compatible idle servers
according to the ALIS (“Assign to Longest Idle Server”) policy [2], or one must
determine appropriate assignment probabilities that depend on which servers
are busy and on the arrival order of the jobs in service on those servers [28].

For most of this paper, we turn to sample path arguments to compare per-
formance in the collaborative and noncollaborative systems. This approach has
several benefits. First, it avoids the complexity of the analytical expressions
for steady-state performance measures, allowing us to obtain results for larger
systems. Second, sample path arguments allow us to obtain stronger com-
parisons between the two systems than simply comparing mean performance
metrics, and they hold regardless of whether the system is stable. For example,
we are able to say that, under appropriate conditions, collaboration is better
not just in terms of steady-state mean response time, but also in terms of
stochastically minimizing the number-in-system process. Finally, we are able
to consider more general settings: our results do not require any particular
assignment rule for idle servers in the noncollaborative model, nor do they
require Poisson arrivals for either model, so they hold even when the steady-
state distribution is unknown. We can also consider more general scheduling
policies than FCFS. Our sample path arguments shed light on the conditions
under which collaboration is better than noncollaboration—and on the limits
of this benefit.

The Cost of Collaboration 5

– We show that, with coupled arrival and potential service completion pro-
cesses, the benefit of collaboration is bounded: the number of jobs at any
time under noncollaboration exceeds the number without collaboration by
at most M , the total number of servers.

– We show that, again with coupled arrivals and potential service comple-
tions, the cost of collaboration is unbounded: the number of jobs under
collaboration can be arbitrarily larger than that under noncollaboration
with non-zero probability.

For symmetric systems, in which either the jobs or the servers are stochas-
tically indistinguishable from one another, we can show, for coupled systems,
that collaboration is always beneficial (i.e., there are always fewer jobs under
collaboration). Because of our results above for a complete coupling of both
the timing and the particular job classes for arrivals and service completions,
our result for symmetric systems requires us to use a different, novel, coupling
approach, in which we directly couple the timing of all arrivals and potential
service completions, but we periodically resample job classes, while maintain-
ing the correct marginal distributions. This approach allows us to obtain com-
parisons between the collaborative and noncollaborative systems that are not
possible using either steady-state analysis or direct coupling techniques.

– We show that, in symmetric systems, we can construct stochastically cou-
pled sample paths, so that collaboration always leads to fewer jobs in the
system than noncollaboration.

– A corollary is that collaboration is always better in the popular redundancy(d)
model for job replication; numerical evidence for this result was previously
provided [9].

– We show that collaboration is stochastically better under the optimal schedul-
ing policy when the bipartite matching between jobs and servers has a
nested structure.

Finally, we shift our focus to the metric of response time, rather than
number in system, using insights gained from our sample-path analysis.

– We provide bounds on the difference in mean steady-state response time
between the collaborative and noncollaborative systems.

Notably, these bounds hold for much more general settings than most steady-
state results in the literature, because they do not rely on the assumptions
required to obtain a product-form stationary distribution.

The remainder of this paper is organized as follows. In Section 2 we provide
a brief overview of related work. Section 3 introduces our system model and
some preliminary results that we will use throughout the rest of the paper. In
Section 4 we study the collaborative and noncollaborative systems in steady-
state, presenting new results for the noncollaborative system and comparing
the mean number of jobs between the two systems. In Section 5 we study
the number of jobs for collaborative and noncollaborative systems on sample
paths, and, in particular, when they have exactly the same arrival and potential

6 Kristen Gardner, Rhonda Righter

service processes. In Section 6, we use an alternative coupling approach to show
that, in symmetric systems, the number of jobs is always stochastically smaller
under collaboration. We also briefly consider alternative scheduling policies. In
Section 7 we return to steady-state and consider the metric of response time.
Finally, in Section 8, we conclude.

2 Related Work

For an overview and references on product-form results for collaborative and
noncollaborative models, see [17]. The redundancy(d) model, in which copies
of an arriving job are sent to d randomly chosen servers, was studied by
Gardner et al. [14] for the collaborative (cancel-on-complete, CoC) system,
and by Ayesta, Bodas, and Verloop [9,10] for the noncollaborative (cancel-
on-start, CoS) system; the latter papers also include numerical comparisons of
the steady-state performance under collaboration (CoC) and noncollaboration
(CoS). Collaborative and noncollaborative systems have also been considered
in the operations management literature; generally these paper study opti-
mal policies for assigning flexible servers to tandem queues, unlike our setting
where all servers work in parallel. See [18] and [27] for overviews, and [19] for
more recent work.

The above papers, and indeed most of the literature comparing collabo-
rative and noncollaborative models, assume exponential and independent ser-
vice times, as we do in this paper. In the non-exponential setting, Koole and
Righter [23] showed that when all jobs are fully flexible and service times are
new-worse-than-used (i.e., remaining service times for jobs that are in process
are stochastically larger than jobs that have not started service), the departure
process under collaboration is stochastically larger than under noncollabora-
tion. Kim, Righter, and Wolff [22] showed the reverse when service times are
new-better-than-used, (i.e., “new” jobs have stochastically longer remaining
service times than “used” jobs) and when there are two servers or an infinite
number of jobs. Joshi, Soljanin, and Wornell [20,21] did similar comparisons
for the fully flexible job case where, for a job to be complete, k ≥ 1 copies must
complete service. There have also been comparisons of stability regions for the
collaborative and noncollaborative models when copies of jobs are correlated
across servers, and for service disciplines other than FCFS (see [6–8,25,26]
and the references therein). Gardner et al. [16] introduce a model in which
a job’s service times are correlated across servers and study a policy where
collaboration only occurs when servers otherwise would be idle. Some of the
work in the operations management literature has maintained the exponential
service time assumption while allowing non-additive service rates when servers
collaborate [4,5,29].

The Cost of Collaboration 7

3 The Model and Preliminaries

Our system consists of J classes of jobs and M servers; let J and M denote
the sets of all job classes and all servers respectively. Class-i jobs arrive to
the system as an exogenous process with mean rate λi, i = 1, . . . , J . The
total arrival rate to the system is λ =

∑
i λi. Each arriving job is a class-

i job with probability λi/λ. Most of our results will apply for this general
arrival process; for the steady-state results we present in Section 4, we will
require Poisson arrivals. Service times are exponential and i.i.d. with rate µm
on serverm, m = 1, . . . ,M ; the total service capacity is µ =

∑
m µm. There is a

bipartite graph structure indicating which servers can serve which job classes.
Let Si = {j : server j can serve class i} denote the set of servers compatible
with job class i, and let Cj = {i : server j can serve class i} be the set of job
classes compatible with server j. Denote by R(A) = {i : Si ⊆ A} the set of
job classes i that require a server in set A ⊆M. Let µ(A) =

∑
j∈A µj denote

the total rate of all servers in set A ⊆M, and let λ(B) =
∑
i∈B λi denote the

total arrival rate of all job classes in set B ⊆ J . For stability, we assume that
for any set A ⊆M, we have λ(R(A)) < µ(A) (following the results of [2,13]).

When a job arrives to the system, it joins a central queue that stores all jobs
in the system (including jobs that are in service as well as those that are not
yet in service) in their order of arrival. Each server works through this central
queue in First-Come First-Served (FCFS) order, skipping over any jobs with
which it is not compatible. We consider two different models for service. In the
noncollaborative model, a job can only enter service on a single server. That
is, if the next job in the queue encountered by server j is of some class i ∈ Cj
and the class-i job is already in service on some other server k ∈ Si, then
server j must skip over the class-i job and proceed to the next compatible
job. In the collaborative model, a job can be in service simultaneously at
multiple servers. That is, in our above example, server j will begin processing
the class-i job, which is now in service on both servers j and k. If a job is in
service on multiple servers, it departs from the system as soon as it completes
service on any one of those servers. Because service times are exponentially
distributed, this is equivalent to the job being served at a single fast server
with additive rate. We will refer to our models as the C (collaborative) and
NC (noncollaborative) models.

We adopt the central queue view of the system because this view will be
helpful in developing our proofs in the sections that follow. However, we note
that the central queue system is equivalent to a distributed system in which
each server has its own FCFS queue and when a class-i job arrives to the sys-
tem it joins the queues at all servers in Si. This distributed view of the system,
often referred to as replication or redundancy, is common in computer systems
applications. In the distributed view, the collaborative model is equivalent to
“cancel-on-complete” redundancy, and the noncollaborative model is equiva-
lent to “cancel-on-start” redundancy. Because of the equivalence between the
central queue and distributed views of the system, all of the results that we
obtain in the central queue view also apply to distributed redundancy systems.

8 Kristen Gardner, Rhonda Righter

For the NC system, the steady-state results that have been derived in
earlier literature require an additional policy restriction. Specifically, when
an arriving job finds multiple compatible idle servers, it must be assigned to
one of those servers according to either (1) the assign-to-longest-idle-server
(ALIS) policy, or (2), the random-assignment-to-idle-servers (RAIS) policy,
which requires specific assignment probabilities. Our steady-state results in
Section 4 will require this assumption. However, for most of the paper, our
results do not require any particular assignment condition for jobs that find
multiple compatible idle servers. Hence, our analytical approach allows us to
study a more general version of the NC system than previously has been
considered in the literature.

3.1 Preliminary Results

We begin with two preliminary results that allow us to relate performance met-
rics in the collaborative and noncollaborative systems. By considering sample
paths we have the following lemma relating, at any time t, (1) the state of the
collaborative system, i.e., the classes of jobs present in their order of arrival,
and (2) the state of the noncollaborative queue, i.e., the classes of jobs present
in the queue (not in service) in their order of arrival. Let γC(t) and γNCQ (t)
denote respectively the system state in the collaborative model and the queue
state in the noncollaborative model, where by state we mean the sequence of
classes of jobs in order of arrival. Note that the lemma does not require Pois-
son arrivals—arrivals may be arbitrary as long as they are independent of the
state of the system—nor does it require a particular assignment condition for
the NC system. The proof involves coupling the arrival sequences and poten-
tial service sequences for the C and NC systems and showing that, while all
servers in the NC system remain busy, the system state of the former evolves
identically to the queue state of the latter; we include the proof in Appendix A
for completeness.

Lemma 1 [1,17] Suppose all the servers are busy at time 0 in NC, and let
γC(0) =st γ

NC
Q (0). Let τ be the first time after time 0 at which any server

becomes idle in NC. Then {γC(t)}τt=0 =st {γNCQ (t)}τt=0.

A consequence of this lemma is that the queueing time of a job arriving
to the noncollaborative system in steady state, conditioned on finding all the
servers busy, is the same as the response time of a job arriving to the collab-
orative system in steady state.

We also have the following lemma for the conditional steady-state distri-
butions for both the C and NC systems assuming Poisson arrivals; the result
follows from the product form for the steady-state distributions.

Lemma 2 [11,17] Assuming Poisson arrivals, the conditional steady-state
distribution for the jobs in system for the collaborative model (and for the
jobs in queue for the noncollaborative model), given that all servers in S ⊆M

The Cost of Collaboration 9

(a) The W model (b) The N model (c) A nested system

Fig. 1 The bipartite graph structures for (a) the W model, (b) the N model, and (c) an
example of a nested system.

are idle, is the same as the corresponding steady-state distribution in a reduced
system consisting of servers M\S and job classes J \

⋃
j∈S Cj, that is, a sys-

tem in which the servers in S and all job classes compatible with those servers
are removed.

Indeed, the Markov chain for the process, given a subset of servers remains
idle, is the same as the Markov chain for a reduced system with those servers
removed.

3.2 Specific System Structures

In the sections that follow, we focus on a few specific system structures to
develop our initial results before generalizing to a wider range of systems. The
W model (see Figure 1(a)) consists of M = 2 servers and J = 3 classes of
jobs. Class-1 jobs are compatible with server 1 only (S1 = {1}), class-2 jobs
are compatible with server 2 only (S2 = {2}), and class-3 jobs are compatible
with both servers (S3 = {1, 2}). When λ1 = 0, the W model reduces to a
special case called the N model (see Figure 1(b)); for consistency of notation
between the W and N models we continue to label the job classes as 2 and 3,
even though there are only two job classes in the N model. The W and N models
are special cases of nested systems (see Figure 1(c)). In a nested system, for
any two job classes i and j, either (1) Si ⊂ Sj , (2) Sj ⊂ Si, or (3) Si ∩Sj = ∅.
All nested systems have a fully flexible job class J , with SJ = {1, . . . ,M}.
If we remove class J from the system, the system decomposes into two or
more non-overlapping nested subsystems, each with its own fully flexible job
class. These nested subsystems can be recursively decomposed, in turn, until
we arrive at systems consisting of a single job class. In the example shown in
Figure 1(b), if the fully flexible class 8 is removed the system decomposes into
one nested system consisting of servers 1 and 2 and job classes 1, 2, and 6,
and another nested system consisting of servers 3, 4, and 5 and job classes 3,
4, 5, and 7.

10 Kristen Gardner, Rhonda Righter

4 Steady-State Number of Jobs

If arrivals are Poisson, and, for the noncollaborative case, if the assignment of
jobs to idle servers either is according to ALIS (assign to longest idle server),
or is random (RAIS, random assignment to idle servers) with particular as-
signment probabilities, then we obtain a product form for the steady-state
probabilities. See [17] for an overview and references. However, these probabil-
ities are for the state described in terms of classes of jobs in order of arrival,
and often are difficult to use to obtain formulas for performance measures such
as response times and number of jobs for general systems. For an important
subclass of bipartite compatibility systems with a nested structure, we do get
simple formulas for steady-state number of jobs under collaboration, and these
in turn give partial results under noncollaboration, using Lemma 1. In this sec-
tion we focus on a special case called the W model; we review steady-state
results for the number in system in the collaborative system and derive new
closed-form results in the noncollaborative system. Note that, because jobs
within a class are served FCFS, we can use distributional Little’s law to trans-
form our distributional results for per-class number in system to response-time
distribution results.

We begin with some notation. Let NX
i be the number of jobs of class

i in steady state in our collaborative model, i = 1, 2, 3, X = C,NC, let
NM/M/1(λ, µ) be the number of jobs in an M/M/1 queueing system with

arrival rate λ and service rate µ, and let N
M/M/1
i (λi, λ, µ) be the number of

class-i jobs in a multiclass M/M/1 queue with class-i arrival rate λi, total
arrival rate λ, and service rate µ. Recall that NM/M/1(λ, µ) ∼ geom(1 − λ

µ)

and N
M/M/1
i (λi, λ, µ) ∼ geom(1− λi

µ−λ+λi
) ∼ NM/M/1

i (λi, µ− λ+ λi), where

Y ∼ geom(p) represents a geometrically distributed random variable with
P (Y = y) = p(1− p)y, y ∈ {0, 1, . . . }. Finally, let I(p) be a Bernoulli random
variable with success probability p.

Proposition 1 [13,15,17] For the W model in the collaborative system, the
per-class number-in-system distributions are as follows:

NC
3 ∼ NM/M/1(λ3, µ− λ1 − λ2) ∼ NM/M/1

3 (λ3, λ, µ) ∼ geom
(

1− λ3
µ− λ+ λ3

)
NC
i ∼ NM/M/1(λi, µi) + I

(
λ3

µ− λ+ λ3

)
·NM/M/1

i (λi, λ, µ)

∼ geom
(

1− λi
µi

)
+ I

(
λ3

µ− λ+ λ3

)
· geom

(
1− λi

µ− λ+ λi

)
, i = 1, 2.

The Cost of Collaboration 11

The per-class mean numbers in system are:

E[NC
3] =

λ3
µ− λ

E[NC
i] =

λi
µi − λi

+
λ3

µ− λ+ λ3
· λi
µ− λ

, i = 1, 2.

Of particular interest is the special case of the symmetric W, in which
µ1 = µ2 = µ/2 and λ1 = λ2 = (λ− λ3)/2.

Corollary 1 For the symmetric W model in the collaborative system, the
class-i numbers in system, i = 1, 2, are given by

E[NC
1] = E[NC

2] =
λ− λ3

2(µ− λ)
+

λ− λ3
2(µ− λ+ λ3)

.

We now develop the equations for steady-state number of class-i jobs in
the noncollaborative W system under FCFS-ALIS, NNC

i . We note that the
expressions also hold under FCFS-RAIS, but the approach to find them under
FCFS-RAIS is more complicated because of the need to derive appropriate
assignment probabilities for assigning class-3 arrivals to idle server j when both
servers are idle. While we give the first exact closed-form expressions for the
per-class number-in-system distributions in the noncollaborative W model, the
proofs, which we defer to the appendix, follow from results presented in [17].

Let Pj be the probability that server j is idle and the other server is busy,
j = 1, 2, and let P∅ be the probability that neither server is idle. Let Pj(i)
denote the probability that server j is working on a class-i job, j = 1, 2,
i = 1, 2, 3. The per-class numbers in system in the noncollaborative system
are given in terms of these probabilities, which are derived in Lemmas 5 and 6
in Appendix B.

Proposition 2 For the W model in the noncollaborative system, the per-class
number-in-system distributions are as follows:

NNC
3 ∼ I(P1(3)) + I(P2(3)) + I(P∅) ·NC

3

∼ I(P1(3)) + I(P2(3)) + I(P∅) · geom
(

1− λ3
µ− λ+ λ3

)
NNC

1 ∼ I(P1(1)) + I(P2) ·NM/M/1(λ1, µ1) + I(P∅) ·NC
1

∼ I(λ1/µ1) + (I(P2) + I(P∅)) · geom
(

1− λ1
µ1

)
+ I(P∅) · I

(
λ3

µ− λ+ λ3

)
· geom

(
1− λ1

µ− λ+ λ1

)
NNC

2 ∼ I(λ2/µ2) + (I(P1) + I(P∅)) · geom
(

1− λ2
µ2

)
+ I(P∅) · I

(
λ3

µ− λ+ λ3

)
· geom

(
1− λ2

µ− λ+ λ2

)

12 Kristen Gardner, Rhonda Righter

The per-class mean numbers in system are:

E[NNC
3] = P1(3) + P2(3) + P∅

λ3
µ− λ

E[NNC
1] =

λ1
µ1

+ (P2 + P∅)
λ1

µ1 − λ1
+ P∅

λ3
µ− λ+ λ3

λ1
µ− λ

E[NNC
2] =

λ2
µ2

+ (P1 + P∅)
λ2

µ2 − λ2
+ P∅

λ3
µ− λ+ λ3

λ2
µ− λ

.

We now consider the special case of the symmetric W model, in which
µ1 = µ2 = µ/2 and λ1 = λ2 = (λ − λ3)/2. Here the expressions for Pj , and
Pj(i) simplify nicely (see Corollary 10 in Appendix B), in turn yielding simple
expressions for mean number in system and mean response time.

Corollary 2 For the symmetric W model in the noncollaborative system, the
class-i mean numbers in system, i = 1, 2, 3, are given by

E[NNC
1] = E[NNC

2] =
λ− λ3

2

(
1

µ− λ
− 1

µ+ λ3
+

1

µ
+

1

µ− λ+ λ3

)
E[NNC

3] =
λ3

µ− λ
+
λ3(µ− λ+ λ3)

µ(µ+ λ3)
.

4.1 C versus NC Comparison

We are now ready to compare the per-class and overall mean number in system
in the C and NC systems. We begin with the symmetric W model, where our
closed-form expressions for mean numbers of jobs in both systems yield simple
results for the difference between the two systems:

E[NC
1]− E[NNC

1] = E[NC
2]− E[NNC

2] = −2λ3(λ− λ3)

µ(µ+ λ3)
,

E[NC
3]− E[NNC

3] = −λ3(µ− λ+ λ3)

µ(µ+ λ3)
,

E[NC]− E[NNC] = − λ3
µ+ λ3

.

All of these differences are strictly negative as long as there are flexible jobs,
λ3 > 0, meaning that all classes, and the system overall, have better perfor-
mance in the collaborative system than in the noncollaborative system.

Figure 2 shows the difference in the mean number of jobs in the C and
NC systems in the symmetric W model with µ = 2. The only free system
parameters in the symmetric W are λ and p3 = λ3/λ; we vary both of these.
We observe that the magnitude of the difference in mean number of jobs
between the two systems is at most 1/2; this also follows from our analytical
results above, with λ3 = λ → µ = 2. This maximum difference occurs when
p3 = 1, i.e., when all jobs are class-3. In this case, the C system collapses into

The Cost of Collaboration 13

-0.6

-0.4

0

-0.2

0

0.5
2

11 0

Fig. 2 E[NC]−E[NNC] as a function of λ and p3 (the fraction of jobs that are class-3) in
the symmetric W model. Here λ1 = λ2 and µ1 = µ2 = 1.

(a) λ3 = 0.1 (b) λ3 = 0.5 (c) λ3 = 1

Fig. 3 E[NC] − E[NNC] as a function of λ1 and λ2 in the asymmetric W model. Here
µ1 = 1, µ2 = 10, and we consider three different values of λ3.

a single M/M/1 system with service rate µ, whereas the NC system becomes
an M/M/2 with each server having rate µ/2. At the other extreme, when
p3 = 0 the two systems are identical; both become two independent M/M/1
queues, one consisting of server 1 and class-1 jobs, and the other consisting
of server 2 and class-2 jobs. In between these two extremes, the magnitude of
the difference in mean number of jobs increases with p3. In Section 6, we will
show a stronger result: not only is collaboration better for the mean number of
jobs, but, in symmetric systems, collaboration also is better on stochastically
coupled sample paths (Theorem 4).

The story is quite different in the asymmetric W model. Because the expres-
sions are long, we use our analytical results to present a numerical comparison.
Figure 3 shows the difference in mean nunber of jobs between the C and NC
asymmetric W systems, E[NC]− E[NNC]. We observe that the performance
under collaboration is worse than under noncollaboration when the dedicated
jobs are very unbalanced, i.e., when one dedicated class has very high load and
the other dedicated class has very low load. How high or low the per-class loads
need to be in order for C to be worse depends on λ3 and on the relative server
rates. The intuition here is that if one server is highly loaded with dedicated
jobs (in the cases shown in Figure 3, server 2 and class 2), then the class-2 jobs
are significantly harmed if class-3 jobs enter service on server 2. While this is
a potential problem under both C and NC, when the class-2 load is high it
will be rare for a class-3 job to enter service at server 2 before server 1. In the
noncollaborative model, this means that the class-3 job will not run on server
2, whereas in the collaborative model the class-3 job could still enter service

14 Kristen Gardner, Rhonda Righter

Fig. 4 Comparing E[N] for C and NC in the asymmetric W. Here λ3 = µ1 = 1, λ1 = 0,
and λ2 and µ2 vary.

on server 2, thereby hurting the class-2 jobs. In the next section, we will see
how extra jobs can accumulate in the collaborative model on a sample path.

One of the cases in Figure 3 that exhibits the largest difference in mean
number of jobs between the C and NC systems occurs when λ3 = µ1, λ1 = 0,
and λ2 is high. We now look at this special case in more detail and explore the
effect of changing λ2 and µ2. Note that, because λ1 = 0, we have now moved
from the W model to the N model. Figure 4 shows our results; again, higher
values indicate that the C system is worse than the NC system. The difference
between C and NC is largest when λ2 ≈ µ2; a messy algebraic argument (with
the aid of Mathematica) shows that as λ2 → µ2, this difference approaches
µ2

µ1
− 1, for µ2 > 1.

Proposition 3 Let λ3 = µ1 and λ1 = 0. As λ2 → µ2, E[NC] − E[NNC] →
µ2

µ1
− 1.

Proposition 3 tells us that, by increasing λ2 ≈ µ2, the difference in the mean
number of jobs in the C and NC systems can become arbitrarily high. Thus,
for highly asymmetric systems, the cost of collaboration can be significant. As
we will see, this is consistent with our sample-path number-of-jobs results. We
will show that the benefit of collaboration is strictly bounded, while the cost
can be arbitrarily large on a sample path (Section 5).

5 General Sample-Path Bounds

In this section we consider the difference between NC(t) and NNC(t), where
Nx(t) is the total number of jobs in system x, x = C,NC, at time t. We study
this difference on sample paths with coupled arrivals and potential service
completions, where a potential service completion (which occurs according to
a Poisson process at rate µ =

∑
µi) results in an actual job departure if the

server is not idle. For our sample-path results, we can have a general exogenous
arrival process, as long as each arrival is independently of class-i with probabil-
ity λi/λ, and, for Theorem 2 below, we also assume that times between arrivals
have nonzero probability of being arbitrarily small. We show that for coupled

The Cost of Collaboration 15

Fig. 5 Difference in the number of jobs in the C and NC systems over time. For the sample
path shown, µ1 = 1, µ2 = 10, λ1 = 0, λ2 = 9.5, and λ3 = 1.

arrival and potential service processes, the benefit of collaboration is always
bounded with probability one while the cost is not bounded. In particular, on
coupled sample paths, {NNC(t)−NC(t)}∞t=0 ≤M with probability 1, where M
is the number of servers, but, for any K, t ≥ 0, P (NC(t)−NNC(t) > K) > 0.
This behavior is illustrated in Figure 5 for an N model (which is equivalent to
the W model with λ1 = 0). The general intuition is that more flexible jobs can
“block” later arriving less flexible jobs in collaborative systems, whereas later
arriving jobs can “pass” earlier arrivals in noncollaborative systems, some-
times significantly reducing the number of jobs in those systems. At the end
of the section we show a tighter bound on the benefit of collaboration for the
W model.

We start with the proof of the upper bound of M on the benefit of collab-
oration, using the insight from Lemma 1 (which extends easily to the general
arrivals case) that, when all servers are busy, the job queue in the noncol-
laborative system has the same coupled sample path as the system queue in
the collaborative system (in addition to M extra jobs in service for the NC
system). Let us therefore define the NCB (noncollaborative busy) model as a
modified version of the noncollaborative, NC, model in which we keep all the
servers busy by assigning a server that becomes idle and that does not find
a waiting compatible job a compatible “dummy job.” For x = C,NC,NCB,
let Nx(t) (Nx

Q(t)) be the total number of jobs in system x (in the queue for
system x) at time t, and define Nx

i (t) (Nx
Qi(t)) correspondingly for class i jobs.

Let γxQ(t) denote the detailed queue state of system x at time t; the detailed
state is of the form (c1, c2, ..., cn) for some n ≥ 0 and tracks the classes of all
jobs in the queue (i.e., not including the jobs in service) in the order in which
they arrived. Let γxQ(t) ≺ γyQ(t) mean that the detailed queue state in system y

at time t, γyQ(t), includes γxQ(t) as well as some number of interleaved “extra”

jobs (so Nx
Qi(t) ≤ Ny

Qi(t) for all i). We will assume γNCQ (0) ≺ γNCBQ (0). Note

that NNCB(t)−NNCB
Q (t) = M ≥ NNC(t)−NNC

Q (t).

Lemma 3 Given γNCQ (0) ≺ γNCBQ (0), and coupled arrival and potential ser-

vice completion processes, {γNCQ (t)}∞t=0 ≺ {γNCBQ (t)}∞t=0 with probability 1, so

{(NNC
Q1 (t), NNC

Q2 (t), ..., NNC
QJ (t))}∞t=0 ≤ {(NNCB

Q1 (t), NNCB
Q2 (t), ..., NNCB

QJ (t))}∞t=0

with probability 1.

16 Kristen Gardner, Rhonda Righter

Proof Our proof will be by induction on t; the result holds at time t = 0.
Suppose γNCQ (t) ≺ γNCBQ (t) at some time t ≥ 0. Let τ be the time of the
next event after t. The system state does not change between time t and
time τ , so the result continues to hold up until time τ . We will show that
γNCQ (τ) ≺ γNCBQ (τ).

If the event at time τ is an arrival, then the arriving job either is appended
to the end of the queue for both systems, so γNCQ (τ) ≺ γNCBQ (τ), or it enters
service and leaves the queue immediately under NC but becomes an extra job
under NCB, so γNCQ (τ) ≺ γNCBQ (τ).

If the event at time τ is a potential service completion and the same job,
with class cj ∈ γNCQ (t) for some j, is assigned to a server and leaves the queue

in both systems, again γNCQ (τ) ≺ γNCBQ (τ).
If the event is a potential service completion and an extra job enters service

under NCB but the server idles under NC because there is no compatible job,
we still have γNCQ (τ) ≺ γNCBQ (τ).

If the event is a potential service completion and different jobs enter service
in the two systems, then it must be that under NC a job with class cj ∈ γNCQ (t)
enters service, while under NCB an extra job of some class c enters service,
where this class-c job arrived before the class cj job. Then the extra class-c
job disappears from the state under NCB and the class cj job becomes an
extra job. Again, γNCQ (τ) ≺ γNCBQ (τ).

From Lemma 1, we can couple the NCB and C processes, by starting with
M jobs in service in the NCB system and γNCBQ (0) = γC(0), so that

{(NNCB
Q1 (t), NNCB

Q2 (t), ..., NNCB
QJ (t))}∞t=0 = {(NC

1 (t), NC
2 (t), ..., NC

J (t))}∞t=0 wp 1.

Now suppose the collaborative and noncollaborative models have the same
detailed states at time 0, γNC(0) = γC(0), and let γNCB(0) have M busy
servers and γNCBQ (0) = γNC(0), so γNCQ (0) ≺ γNCBQ (0). Then, for coupled
arrival and service processes, from the lemma above and Lemma 1,

{NNC(t)}∞t=0 ≤ {NNC
Q (t)+M}∞t=0 ≤ {NNCB

Q (t)+M}∞t=0 = {NC(t)+M}∞t=0 wp 1,

That is, we have the following, where the argument for the second claim is
similar because |Si| is an upper bound on the number of class i jobs in service
for the NC system.

Theorem 1 Given the same initial states, and coupled arrival and service
processes, {

NNC(t)−NC(t)
}∞
t=0
≤M wp 1,{

NNC
i (t)−NC

i (t)
}∞
t=0
≤ |Si| wp 1.

We now show that the cost of collaboration can grow arbitrarily large along
sample paths for systems with coupled arrivals and services.

The Cost of Collaboration 17

Theorem 2 For any given bipartite matching structure that includes a pair
of classes i and j with Si ∩ Sj 6= ∅, with coupled arrival and potential service
processes,

{
NC(t)−NNC(t)

}∞
t=0

can be arbitrarily large.

To prove Theorem 2, we begin by studying the smallest nontrivial bipartite
matching model, the N model (see Figure 1(b)). The full system state at time
t is γx(t), x = C,NC, where γ tracks the classes of all jobs in the system in
their arrival order; note that this state includes jobs that are in service as well
as jobs that are waiting in the queue for both the C and NC systems. We
use a subscript to indicate the server to which a job has been assigned; this is
required to avoid ambiguity in the NC system. For example, γNC(t) = (32, 2)
means that there are two jobs in the system, the first is a class-3 job that is
in service on server 2, and the second is a class-2 job that is waiting in the
queue. If γNC(t) = (31, 22), then both jobs are in service (and, in terms of the
future evolution of the system, the state is equivalent to (22, 31)).

We are now ready to show that, for the N model, system C can have
arbitrarily many more jobs of either class than system NC, on sample paths
with coupled arrivals and potential services.

Lemma 4 For the N model, with coupled initial conditions and arrival and po-
tential service processes,

{
NC(t)−NNC(t)

}∞
t=0

and
{
NC
i (t)−NNC

i (t)
}∞
t=0

,

i = 2, 3, all can be arbitrarily large. That is, for any K, t ≥ 0, P (NNC(t) −
NC(t) > K) > 0.

Proof We provide a sample path, with coupled arrivals and potential service
completions, that has nonzero probability of the difference exceeding K by
time t. Let the number of events in the coupled arrival and service processes
by time t be κ, where κ will be determined later. Note that the probability of
κ events in (0, t) is greater than 0 because of our assumption that interarrival
times can be arbitrarily small.

Start with the same set of 4 jobs in the two systems: γC(0) = (22, 31, 2, 2)
and γNC(0) = (22, 31, 2, 2). In the following, for notational simplicity, we re-
define time in the argument of γx so that time i denotes the time of the
ith event (either an arrival or a potential service completion). Thus, we have
redefined γx(t) to be γx(κ). Let the coupled event sequence consist of j ser-
vice completions at server 2, followed by one service completion at server 1,
one class-3 arrival, and j + 1 class-2 arrivals, j = 2, 3, The beginning
of this sample path proceeds as follows. There are three service completions,
on servers 2, 2, and 1, so γC(3) = (22, 2) and γNC(3) = (22). Next, there
are four arrivals, of classes 3, 2, 2, and 2, so γC(7) = (22, 2, 31, 2, 2, 2) and
γNC(7) = (22, 31, 2, 2, 2). Next, there are four service completions on servers
2, 2, 2, and 1, so γC(11) = (22, 2, 2) and γNC(11) = (22). At this point we
can see the pattern emerging: for each cycle j, after the j service completions,
there is 1 class-2 job in system NC and there are j class-2 jobs in system C.
We now let κ be large enough so that we have a build-up of K+ 1 class-2 jobs
in system C (and 1 class-2 job in system NC).

18 Kristen Gardner, Rhonda Righter

Note that C could also have arbitrarily more class-3 jobs than NC. Using
the above initial state and the above sample path up to j = k, we reach a state
consisting of k class-2 jobs in system C and one class-2 job in system NC. We
then proceed with a coupled sample path consisting of k − 1 class-3 arrivals,
followed by k − 1 service completions on server 2. At this point, the state in
system C consists of one class-2 job followed by k−1 class-3 jobs, whereas the
state in system NC consists of a single class-3 job that is in service at server
1.

We can use this same sample path for any subsystem that has the same
structure as the N model. That is, if a system contains a pair of classes i and
j and a pair of servers r and s such that r ∈ Si, r /∈ Sj , s ∈ Si, and s ∈ Sj ,
then the above argument applies after we relabel i as class-3, j as class-2, r as
server 1, and s as server 2. This is quite general: all that is required to have
such a subsystem is that there exists a pair of job classes i and j such that
Si ∩ Sj 6= ∅. This holds in any nondegenerate bipartite matching structure,
which completes the proof of Theorem 2.

5.1 The W model and a tighter bound

The bound in Theorem 1 tells us that, for any bipartite matching structure,
we can couple the C and NC systems so that the NC system has at most M
more jobs than the C system. We now refine that bound for the W model (see
Figure 1(a); recall that in the W model we have 3 classes of jobs and M = 2
servers, where class i jobs can only be served by server i, i = 1, 2, and class
3 jobs are compatible with both servers. For the W model, we will show that
with coupled arrival and service processes, and the same initial state, the NC
system can have at most one more job than the C system, and, if it does have
such an extra job, then, excluding that job, the C system has at least as many
jobs of each class as the NC system. This result generalizes a similar result
for the N model given by Adan et al. [1]

Assume that NC
i (0) = NNC

i (0) for i = 1, 2, 3, and that arrivals and po-
tential service completions are coupled for both systems. Because our systems
are FCFS, we can make the following observations about the coupled systems
C and NC.

1. If both systems have the same number of class i jobs, then these jobs are
the same set of jobs, i.e., they have the same arrival times in both systems.

2. If system x has fewer class i jobs than system x′, (x, x′) = (C,NC) or
(NC,C), then the additional class i jobs in x′ must have arrived earlier
than the other class i jobs, and the other class i jobs have the same arrival
times in both systems.

3. If a class 3 job is present in system C, then all jobs, regardless of class,
that arrived after it must also be present in C; they cannot start service
until after the 3 job completes service. The same is not necessarily true in
system NC.

The Cost of Collaboration 19

Theorem 3 For the W model, with coupled arrival and service processes and
initial states, we have that with probability 1, {NC(t)}∞t=0 ≥ {NNC(t)−1}∞t=0,
{NC

i (t)}∞t=0 ≥ {NNC
i (t) − 1}∞t=0 for i = 1, 2, 3, and {NC

i (t) + NC
3 (t)}∞t=0 ≥

{NNC
i (t) +NNC

3 (t)− 1}∞t=0 for i = 1, 2.

We outline the key part of the argument here; the full proof is in Ap-
pendix C. The proof is by induction on the time t. If at time t NC has one
more job than C, call it the tagged job, then from our observations above and
the induction hypothesis, the tagged job must have arrived before any of the
jobs in C, and other than the tagged job, all jobs and their arrivals are the
same in both C and NC. This means that the tagged job must be in service
in NC, and the other server must be serving the same job or class of job in
both C and NC (if any). Therefore, if there is a departure in C, there must
also be a departure in NC, so the difference in the numbers of jobs under C
and NC cannot increase beyond the current (at time t) difference of 1.

6 The Benefit of Collaboration

We will generalize our results for mean steady-state number in system for the
symmetric W model to show that collaboration is beneficial in more general
symmetric systems in a stronger, stochastic sense. A system may be symmetric
from the perspective of the servers or from the perspective of the job classes.
Symmetry from the servers’ perspective means that the servers are stochasti-
cally indistinguishable with respect to their service processes, the sets of job
classes with which they are compatible, and the arrival processes of these job
classes. The symmetric W model (λ1 = λ2 but λ3 may be different, µ1 = µ2)
exhibits this type of symmetry. Symmetry from the job classes’ perspective
means that the job classes are stochastically indistinguishable with respect
to their arrival processes, the servers with which they are compatible, and
the service processes of these servers. We will see that a symmetric M model
(λ1 = λ2, µ1 = µ3 but µ2 for the shared server may be different) exhibits this
type of symmetry. The redundancy(d) structure, with all arrival and service
rates the same, and commonly used in large-scale systems, exhibits both types
of symmetry. Another example that satisfies both types of symmetry is the
nearest neighbor model, common in bike share applications, where class i jobs
can be served at server i or server i + 1, M=J with server M + 1 defined to
be server 1, and all arrival rates and service rates are the same.

We know from Theorem 2 that on sample paths that are directly coupled,
so that the arrival process for each class and potential service process for each
server are the same for both the C and the NC systems, we will have a nonzero
probability of the number under C being arbitrarily larger. That is, even for
symmetric systems, we cannot use a direct coupling to show that the job
process in the C system is stochastically smaller than that of the NC system.
To get such an ordering, in this section we use a novel coupling that leverages
the symmetry in the system. To develop intuition for the distinction across

20 Kristen Gardner, Rhonda Righter

different couplings, first consider two W models, A and B, with µAi = µBi ,
i = 1, 2 and λA3 = λB3 , but λA1 = 2, λA2 = 1, λB1 = 1, λB2 = 3. Then, if we
do the direct coupling of all arrival and service processes, the total number
of jobs in model A can exceed the total number of jobs in model B, and vice
versa, by an arbitrary amount with non-zero probability (i.e., in the sense of
Lemma 4). However, if we relabel the job classes in model B, so that job class
1 is relabeled to be job class 2 and vice versa, and then couple the arrival and
service processes, we will have that the number in model B is always at least
as large as the number in model A, with probability 1. For our coupled arrivals
of class 1 jobs, we assume potential arrivals at rate 3, but, with probability
1/3 there is no actual arrival in model A. For our arguments in this section,
we will do a similar relabeling of classes of jobs, where, here, classes may be
relabeled multiple times.

The sample path arguments that we use in this section follow a different
approach than the standard coupling used in Section 5. In Section 5, we allowed
both the C and NC systems to follow the same sequence of arrivals and
potential service completions for the entire time horizon; this is the typical
approach used in sample-path arguments. In this section, we use a slightly
different approach: We will directly couple the timing of all arrivals and
potential service completions, but we will periodically leverage the symmetry
of the systems and policies under consideration to relabel job classes or servers
in one of the two systems while maintaining the correct marginal distributions.
At coupled service completion events, the symmetry property allows us either
to relabel servers and/or job classes, or to resample the entire system state,
to arrive at a stochastically equivalent state from which we can proceed. This
approach allows us to obtain stochastic orderings between the C and NC
systems, which are stronger than the steady-state comparisons of Section 4
and more general in terms of system structure.

We first investigate systems that are extensions of the W model, and then
we consider the redundancy(d) system. We also show that collaboration is
beneficial when we follow an optimal scheduling policy for nested, possibly
asymmetric, systems. Our results hold for general arrival processes, as long as
each arrival is of class i with probability λi/λ independently of all else, and the
arrival process is independent of the state of the system and the collaboration
policy.

6.1 W Model and Variants

We begin by considering the symmetric W model, in which λ1 = λ2 and µ1 =
µ2, and which is symmetric from the servers’ perspective. We have already
shown that collaboration is better in terms of steady-state mean number of
jobs. We now show that it is better in a stronger sample-path sense, and then
generalize our results to several related system structures.

Theorem 4 For the symmetric W model, {NC(t)}∞t=0 ≤st {NNC(t)}∞t=0.

The Cost of Collaboration 21

Proof We consider admissible policies, under which (1) each server maintains
a FCFS service discipline, (2) if the first job in the system that is compatible
with server 1 (respectively, server 2) is a class-3 job, either it can be assigned to
server 1 (respectively, server 2) or it can be relabeled as a class-2 job (respec-
tively, class-1 job), and (3) servers may idle even if there are compatible jobs
in the queue. Our decisions regarding idling and collaboration are not permit-
ted to depend on the state of the system or on the identity of the server; i.e.,
admissible policies preserve the symmetry of the system. We will show that
any policy that does not collaborate when a class-3 job is at the head of the
queue is stochastically dominated by a policy that collaborates at that time.
We then argue that idling when there is work in the queue is also suboptimal.

Let π be an arbitrary admissible policy, and let N(t) be the number of
jobs in the system at time t under π. Suppose that at some time s the first
job in the system is a class-3 job, which we will denote job a, and suppose
(without loss of generality) that π assigns job a to server 1 only. Consider an
alternative system operating under admissible policy π′, with corresponding
N ′(t), and let the two systems have coupled arrival processes and potential
service processes. Let π′ agree with π before time s, and suppose that π′

assigns job a to both servers at time s. We will show that we can construct
π′ on (s,∞) such that {N ′(t)}∞t=0 ≤ {N(t)}∞t=0 w.p. 1. Note that this result
holds for t ∈ [0, s) because π and π′ behave identically over this interval.

Let τ denote the time of the next event (arrival or potential service comple-
tion). If an arrival occurs at time τ , then N(τ) = N(s)+1 = N ′(s)+1 = N ′(τ),
so the result holds. Now suppose that τ is a potential service completion time.
We will consider four cases for this service completion.

Case 1: potential service completion at server 1. Then job a departs
both systems at time τ , and the two systems will be in the same state. Letting
π′ agree with π from time τ on, we have {N ′(t)}∞t=0 = {N(t)}∞t=0.

Case 2: potential service completion at server 2, server 2 is idle
under π. Then job a will complete at time τ under π′ but no job will complete
under π. Let π′ agree with π from time τ on, except that π′ idles server 1 until
job a completes under π; the system under π′ has one fewer job than the
system under π during this time. When job a completes under π, the two
systems again have the same state, and let the two policies agree from that
point on. Then {N ′(t)}∞t=0 ≤ {N(t)}∞t=0.

Case 3: potential service completion at server 2, class-3 comple-
tion under π (see Figure 6(a)). Let job b be the class-3 job that completes
at server 2 at time τ under π. Note between jobs a and b, there may be some
number k ≥ 0 of class-1 jobs that arrived, and no class-2 jobs. Also note that
job a completes at server 2 under π′, while under π job a remains and is treated
as a class-1 job. Let π′ treat job b as a class-1 job. Then, just after time τ ,
the two systems effectively have the same state, with k+ 1 class-1 jobs at the
head of the queue (including one in service). Again, letting the two policies
otherwise agree from time τ on, {N ′(t)}∞t=0 = {N(t)}∞t=0.

Case 4: potential service completion at server 2, class-2 comple-
tion under π (see Figure 6(b)). Let job c be the class-2 job that completes

22 Kristen Gardner, Rhonda Righter

(a) Case 3: class-3 completion (b) Case 4: class-2 completion
at server 2 under π at server 2 under π

Fig. 6 Illustrations of (a) case 3 and (b) case 4 of Theorem 4. Vertical ellipses indicate that
we have not conditioned on the job(s) presented in a section of the queue.

at server 2 at time τ under π, and note that job a completes at server 2 under
π′. Then, just after time τ , the two systems have the same state except that
under π job a is present (and in service on server 1) and job c is not present,
whereas under π′ job a is not present and job c is. Observe that, at this point,
π treats job a as a class-1 job from our definition of admissible policies. Let π′

assign job c to server 2. We now relabel the servers under π′ so that server 1 is
now labeled server 2, and vice versa. We can do this without loss of generality
because of the symmetry of our system and our policies, and because we have
not conditioned on the state of the queue beyond the presence of job a under
π and of job c under π′. Again letting π′ agree with π from time τ on, we have
{N ′(t)}∞t=0 = {N(t)}∞t=0.

At this point we have shown that π′, which always collaborates when the
first job in the system is a class-3 job, has stochastically fewer jobs than π
at all moments in time. Note that π′ may leave a server idle while there is a
compatible job in the system. A similar argument shows that for any policy
that idles at some time s a policy that does not idle at s can be constructed
with a smaller number in system process. Repeating the collaboration and

The Cost of Collaboration 23

nonidling arguments at every moment at which policy π either idles or does
not collaborate yields the result of the theorem.

We now generalize our result for the symmetric W model to several related
models, most of which generalize to arbitrarily many servers. The proofs all
follow the same approach, with some additional cases required for each of the
related models; we defer the details of these proofs to Appendix D.

Consider a model with M servers and M + 1 customer classes, where class
M + 1 is fully flexible, so it can be served by any server, while classes i =
1, ...,M are dedicated classes, i.e., Si = {i}. We call this the extended W
model. In the symmetric extended W model, we also assume that λi = λj
for i, j = 1, ...,M , and µi = µj for i, j = 1, ...,M ; that is, all non-flexible job
classes have the same arrival rate, and all servers have the same rate.

Corollary 3 For the symmetric extended W model, {NC(t)}∞t=0 ≤st {NNC(t)}∞t=0.

We can also embed the extended W model in a larger model. Define servers
1, ...,M , and classes 1, ...,M + 1 as an extended W subsystem, and suppose
there are other servers M + 1, ...,M ′ and classes M + 2, ..., J , such that the
extra classes are either fully flexible classes for the extended W subsystem
or they are incompatible with all the servers in the subsystem. That is, for
i = M+2, ..., J , either Si ⊃ {1, ...,M} or Si∩{1, ...,M} = ∅. Now we consider
only collaboration within the extended W subsystem. We let the policy for the
additional servers and classes be arbitrary, and assume that the C and NC
systems follow the same policy outside of the extended W subsystem.

Corollary 4 For a symmetric extended W subsystem embedded in a larger
system, and considering collaboration within the subsystem, {NC(t)}∞t=0 ≤st
{NNC(t)}∞t=0.

Another generalization of the symmetric W system is the nearest neighbor
model. There are J = 2M classes of jobs, classes i = 1, 2, ...,M are dedicated
classes, with Si = {i}, and classes i = M + 1, ..., 2M are flexible classes, with
Si = {i, i + 1 mod M}. In the symmetric version, all servers have the same
speed, the dedicated job classes all have the same arrival rate, and the flexible
job classes all have the same arrival rate.

Corollary 5 For the symmetric nearest neighbor model, {NC(t)}∞t=0 ≤st {NNC(t)}∞t=0.

Finally, we consider the symmetric M model, which consists of three servers
and two job classes, where class-i jobs, i = 1, 2, are compatible with server
i and server 3. In the symmetric version we let λ1 = λ2 and µ1 = µ2. Be-
cause this system is symmetric with respect to job classes, rather than with
respect to servers, our coupling argument will involve at times relabeling the
job classes, rather than the servers. Apart from recoupling from the jobs’ per-
spective rather than the servers’ perspective, the argument is again similar to
the proof of Theorem 4.

Corollary 6 For the symmetric M model, {NC(t)}∞t=0 ≤st {NNC(t)}∞t=0.

24 Kristen Gardner, Rhonda Righter

6.2 Redundancy(d) Model

We now consider a fully symmetric system where all servers and all job classes
have the same rates, and where the compatibility graph is based on “power-of-
d” routing, under which each arrival is compatible with d ≥ 1 randomly and
uniformly chosen servers. In the redundancy(d) system the bipartite matching
graph has degree d for all job class nodes, and there are

(
M
d

)
job classes. Note

that all job classes are stochastically indistinguishable, as are all servers. Also,
because both our collaborative and noncollaborative policies follow FCFS,
which does not distinguish among job classes or servers, the classes and servers
remain stochastically indistinguishable as the system evolves. That is, at any
time t in both the C and NC systems, any job present at time t is equally
likely to have any class, all servers are equally likely to be busy, and if a server
j is busy under the policy, the job it is serving is equally likely to be of any
compatible job class. Let NC(t) and NNC(t) be the total number of jobs at
time t in the C and NC systems respectively.

Theorem 5 For the redundancy(d) system, if the collaborative and noncol-
laborative systems start in the same state at time 0, then {NC(t)}∞t=0 ≤st
{NNC(t)}∞t=0.

Proof The proof will proceed by coupling and forward induction; in fact, we
will show a stronger result. We begin by assuming that at some arbitrary time
t, NC(t) ≤ NNC(t) w.p. 1. We partition the set of NNC(t) jobs in the NC
system into NNC

1 (t) = NC(t) “basic” jobs and NNC
2 (t) = NNC(t)−NC(t) ≥ 0

“extra” jobs, and let SC(t), SNC1 (t), and SNC2 (t) be the set of servers that are
compatible with the corresponding sets of jobs. We further assume that at
time t, SNC1 (t) = SC(t) w.p. 1 (in addition to NC(t) ≤ NNC(t) w.p. 1); we
will show that, with coupled arrival and potential service completion times,
both conditions hold at time τ w.p. 1, where τ is the time of the next event
(arrival or potential service completion).

For the base case, observe that by starting in the same state at time 0 we
have NC(0) ≤ NNC(0) and SNC1 (0) = SC(0) w.p. 1.

We now proceed to the inductive step. It is important to emphasize that at
time τ− (i.e., just before time τ), we assume only the aggregate coupling, that
NC(τ−) = NC(t) ≤ NNC(τ−) = NNC(t) and the NC jobs are partitioned
such that SNC1 (τ−) = SNC1 (t) = SC(τ−) = SC(t) w.p. 1; we forget any
earlier more detailed job class couplings. That is, if we require a more detailed
coupling of job classes at any τ , we assume that these are resampled, given the
aggregate coupling at time τ−.

We have four cases corresponding to the different events that may happen
at time τ .

Case 1: arrival. By letting the class of the arrival be the same in both
systems, both conditions continue to hold at time τ .

Case 2: potential service completion of a server in SNC2 (t) ∪ SC(t).
This is a potential service completion at a server that is idle, so again, both
conditions continue to hold at time τ .

The Cost of Collaboration 25

Case 3: potential service completion of a server in SNC2 (t)∩SC(t) 6=
∅. In this case, the NC system necessarily has extra jobs, i.e., NC(t) < NNC(t).
Either no jobs leave in either system, or an extra job leaves in the NC system
and no job leaves in the C system. Both conditions still hold.

Case 4: potential service completion of a server in SC(t). By the
nature of collaborative service, a potential service completion of a server in
SC(t) must result in a job completion in the C system, but not necessarily in
the NC system. Because of the symmetry of the redundancy(d) system and
the collaborative and noncollaborative policies, given NC(t) = NNC

1 (t) and
SNC1 (t) = SC(t), the jobs (basic jobs) in the C (NC) system are equally likely
to be any of the job classes that are compatible with the servers in SC(t). This
allows us to sample the specific job classes present at time τ in the C and NC
systems in order to maintain the coupling, as follows. If there is not a service
completion in the NC system, then let one of the basic jobs in the NC system
have the same class as the departing job in the C system, and relabel it as an
extra job. Let the other basic jobs in the NC system be of the same class as
the jobs in the C system. Then NC(τ) = NC(t) − 1 ≤ NNC(t) = NNC(τ),
NNC

2 (τ) = NNC
2 (t) + 1, and SNC1 (τ) = SC(τ), w.p. 1. If there is a service

completion and job departure in both systems, and if it is of an extra job
in the NC system, then again let one of the basic jobs in the NC system
have the same class as the departing job in the C system, and relabel it as
an extra job (so it replaces the departing extra job). Letting the other basic
jobs in the NC system be of the same class as the jobs in the C system,
NC(τ) = NC(t) − 1 ≤ NNC(t) − 1 = NNC(τ), NNC

2 (τ) = NNC
2 (t), and

SNC1 (τ) = SC(τ), w.p. 1. Finally, suppose a basic job completes in the NC
system. Then let the class of the completing job be the same for both systems,
and, again coupling the classes of the other basic NC jobs with the jobs in
the C system, we have NC(τ) = NC(t) − 1 ≤ NNC(t) − 1 = NNC(τ) and
SNC1 (τ) = SC(τ), w.p. 1.

Thus, in all cases, if NC(t) ≤ NNC(t) w.p. 1., then we can couple the
systems so that NC(τ) ≤ NNC(τ) w.p. 1. We can repeat the argument at the
next event time after τ to obtain the result of the theorem.

6.3 Optimal Scheduling in Nested Systems

For most of this paper we assume FCFS scheduling; we now briefly consider
the Least Redundant First (LRF) policy and nested systems. Under LRF, at
all times each server works on the job in its queue with the fewest compatible
servers. That is, server s gives priority to jobs of class i over jobs of class j 6= i
if i, j ∈ Cs and |Si| < |Sj |. Note that this policy is well defined and provides
a unique ordering among all job classes for each server due to the nested
structure: it is not possible to have i, j ∈ Cs and |Si| = |Sj | unless i = j. LRF
which is known to be optimal in nested collaborative systems [15] and in the
W model under noncollaboration [3]; the arguments of [15] easily extend this
result to general nested systems under noncollaboration. We will show that

26 Kristen Gardner, Rhonda Righter

under LRF in nested systems, collaboration is better than noncollaboration.
We first review the optimality results for LRF.

Let Ni(t) be the number of class-i jobs in the system at time t, and let
N i(t) =

∑
j:Sj⊆Si

Nj(t) be the total number of class-i jobs plus those jobs that

have priority over class-i jobs at any server (i.e., the jobs that are less flexible
than class-i jobs and share a server with class-i jobs). Note that NJ(t) is the to-

tal number of jobs in the system. Finally, let ~N(t) = (N1(t), N2(t), . . . , NJ(t)).
We have the following result from [15]. Note that the result does not require
Poisson arrivals; we simply assume that arrivals are an arbitrary exogenous
process.

Theorem 6 [15] The preemptive non-idling LRF policy stochastically mini-

mizes { ~N(t)}∞t=0 among all preemptive, possibly idling, policies for nested col-
laborative systems when service times are exponential and the arrivals form a
general exogenous process.

The proof of Theorem 6 is similar in flavor to the sample-path proofs of the
previous section, and it easily extends to the noncollaborative case, assuming
a nested system. It also extends to nested subsystems of larger systems. That
is, we have the following results.

Corollary 7

(i) Non-idling LRF stochastically minimizes { ~N(t)}∞t=0, among all preemptive,
possibly idling, noncollaborative policies for nested systems with exponen-
tial service times and a general exogenous arrival process.

(ii) Non-idling LRF maximizes the number of departures (job completions) by
time t, for all t, and therefore also minimizes mean response time, for both
collaborative and non-collaborative nested systems.

(iii) For any bipartite compatibility matching and for both collaborative and
noncollaborative systems, if for some server s and two job classes i and
j, s ∈ Si ⊂ Sj, then server s should always give priority to class i over
class j. Thus, dedicated classes that have only one compatible server should
always have highest priority, and a fully flexible class (if any) should have
lowest priority.

The sample-path/interchange arguments for parts (i) and (iii) are very
similar to that in [15] and is omitted; part (ii) follows from (i) because NJ(t) =
N(t) and from Little’s law.

Not surprisingly, if each server follows the optimal policy and serves its least
flexible compatible job class at any particular time, then it also is optimal
to assign as many servers as possible to that job class. That is, assuming
LRF service in a nested system, collaboration is better than noncollaboration.
Again, a sample path proof along the lines of our earlier proofs gives the result;
we omit the details

Corollary 8 The preemptive non-idling collaborative LRF policy stochasti-
cally minimizes { ~N(t)}∞t=0, among all policies in which preemption, idling,
and collaboration are permitted, for nested systems with exponential service
times and a general exogenous arrival process.

The Cost of Collaboration 27

6.4 The impact of flexibility

We briefly note here that for systems in which collaboration is beneficial, i.e.,
symmetric systems and optimally scheduled systems, more flexibility, in terms
of increasing the proportion of jobs in classes with more compatible servers,
is also beneficial. In asymmetric systems, more flexibility may not be more
beneficial (see, e.g., [3,12,15]).

7 Response Time Bounds

Throughout most of this paper, our primary metric has been the number of
jobs in the system. We now turn to the metric of response time, the time from
when a job enters the system until it completes service and departs, revisiting
the steady-state setting considered in Section 4.

Exact expressions for per-class and overall mean response time in the W
model, for both the C and NC systems, follow directly from our expressions
for E[NNC] in Section 4, by Little’s Law: E[T xi] = E[Nx

i]/λi, x = C,NC.
While the results for the C system were previously derived in [13], our results
for the NC system are new. As was the case for mean number in system, the
expressions for mean response time are quite long except in the special case
of the symmetric W. For the symmetric W, we have:

E[TC1] = E[TC2] =
1

µ− λ
+

1

µ− λ+ λ3

E[TC3] =
1

µ− λ

E[TNC1] = E[TNC2] =
1

µ− λ
− 1

µ+ λ3
+

1

µ
+

1

µ− λ+ λ3

E[TNC3] =
1

µ− λ
+
µ− λ+ λ3
µ(µ+ λ3)

.

Comparing mean response time in the two systems, we find

E[TC1]− E[TNC1] = − λ3
µ(µ+ λ3)

,

E[TC3]− E[TNC3] = −µ− λ+ λ3
µ(µ+ λ3)

,

E[TC]− E[TNC] = − λ3
λ(µ+ λ3)

.

As was the case for mean number in system, we again remark that collabora-
tion is always better for the symmetric W, whereas collaboration can be worse
in the asymmetric W.

In principle, one could obtain exact expressions for the probabilities of
various combinations of idle and busy servers to get explicit mean response
times in larger noncollaborative systems, but in general these would be too

28 Kristen Gardner, Rhonda Righter

(a) λ3 = 0.1 (b) λ3 = 0.5 (c) λ3 = 1

Fig. 7 Comparing mean response time in the C and NC asymmetric W systems, where
µ1 = 1, µ2 = 10, and λ1 and λ2 vary; we consider three different values of λ3. Graphs show
E[TC] − E[TNC] (orange surface) and our bound on this difference (blue surface).

complicated to draw useful conclusions. In contrast, the sample-path bounds
that we derive on the number of jobs in the system allow us to obtain bounds on
the difference in mean steady-state response time, for any system structure.
A corollary of Theorem 1 is that E[NNC] ≤ E[NC] + M and E[NNC

i] ≤
E[NC

i] + |Si| where Nx (Nx
i), x = C,NC, is the steady-state number of jobs

(of class i) in system. From Little’s law, Theorems 1 and 3, and Lemma 1, we
have the following.

Corollary 9 Let µmin = minj µj and µimin = minj∈Si µj.

(i) E[TNC] ≤ E[TC] + M
λ and E[TNCi] ≤ E[TCi] + |Si|

λi
, i = 1, ..., J .

(ii) E[TNC] ≤ E[TC] + 1
µmin

.

(iii) E[TNCi] ≤ E[TCi] + 1
µi
min

and E[TNC] ≤ E[TC] +
∑J
i=1

λi

λµi
min

.

(iv) If all servers have the same speed, µi ≡ µ/M , then E[TNC] ≤ E[TC]+M
µ ,

and E[TNCi] ≤ E[TCi] + |Si|
µ , i = 1, ..., J .

(v) For the W model, E[TNC] ≤ E[TC] + 1
λ and E[TNCi] ≤ E[TCi] + 1

λi
,

i = 1, 2, 3.

Note that, in the homogeneous servers case, the bound in case (v) is tighter
than that of case (i).

Figure 7 shows the exact difference in mean response time between the C
and NC systems, in the asymmetric W model, as well as our bound on this
difference. We show the bound given in Corollary 9, which is tighter in this
case. While the bound is not tight, it also is not very far off the exact results
in most regimes; the bound is loosest when λ1 = λ2 = 0, and it becomes
increasingly tight when λ1 and λ2 are high. In larger systems our bounds
will have similar accuracy, indicating that collaboration cannot outperform
noncollaboration by very much.

In the other direction, we see in Figure 7 that collaboration also never
performs much better than noncollaboration, with respect to mean response
time. Recall from Section 4 that the largest difference in mean number occurred
when the system was very highly loaded. In this regime, large differences in
mean number in system correspond to relatively modest differences in mean

The Cost of Collaboration 29

response time, due to the fact that we divide by λ when applying Little’s Law.
The consequence is that, in most settings, the C and NC systems generally
yield very similar response times: collaboration cannot be much better, and it
appears never to be much worse. When we consider the relative benefit of col-
laboration, (E[TC]− E[TNC])/E[TC], the difference in performance between
the two systems disappears almost entirely. Here, there is a material difference
only when both λ1 and λ2 are very close to 0.

8 Conclusion

In this paper we compare the performance of the collaborative and noncol-
laborative models with respect to two metrics: number of jobs in system and
steady-state mean response time. To enable these comparisons, we make sev-
eral methodological contributions. First, we derive the first exact, closed-form
analysis of mean number in system and mean response time in the noncollab-
orative W system in steady state. While previous papers provided the foun-
dations necessary for these results, our synthesis of prior results allows us to
directly and exactly compare steady-state performance metrics between the
C and NC systems. Second, to prove the benefit of collaboration in symmet-
ric systems we develop nonstandard coupling arguments that involve direct
coupling of the number in system over time, but resampling or relabeling of
particular jobs at different time points, by exploiting the symmetry of the
systems under consideration.

Our results indicate that, while collaboration is always better in symmetric
systems, the benefit of collaboration is bounded: in any system, collaboration
cannot outperform noncollaboration by a great deal. On the other hand, we
show that the collaborative system can have arbitrarily more jobs than the
noncollaborative system, on coupled sample paths. Turning to mean response
time, we find that the collaborative and noncollaborative systems tend to have
very similar performance; the relative benefit or cost of collaboration is quite
small. These findings have important implications for configuring systems in
which collaboration is a design choice. In these systems, flexibility of jobs and
servers—or, equivalently, redundantly dispatching jobs to multiple distributed
servers—provides a benefit if either (1) queueing times differ substantially at
different servers, or (2) an individual job’s service times differ substantially at
different servers. Both the collaborative and noncollaborative models (equiv-
alently, cancel-on-complete and cancel-on-start, in redundancy system) gain
the first benefit, but only collaboration (cancel-on-complete) has the potential
to gain from the second point. Our results hold for i.i.d. exponential service
times; here one job truly can have very different service times on multiple
servers, making this setting particularly advantageous to collaboration. Yet
even in this setting, our results indicate that collaboration cannot offer too
much of a benefit over noncollaboration. In more realistic settings, in which a
job’s service times are correlated across servers, any potential benefit of collab-
oration will be even smaller. Furthermore, collaboration has additional costs

30 Kristen Gardner, Rhonda Righter

that we do not model; for example, it may be more difficult to cancel a job
that is in service on multiple servers than a job that is waiting in the queue.
We conclude, therefore, with a recommendation: in most real-world settings,
noncollaboration will be the better choice.

Acknowledgements We thank the anonymous reviewers for their valuable feedback.

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. Adan, I. J. B. F., I. Kleiner, R. Righter, and G. Weiss. (2018) FCFS parallel service
systems and matching models. Perf. Eval. 127: 253-272.

2. Adan, I., and Weiss, G. (2014) A skill based parallel service system under FCFS-
ALIS—steady state, overloads, and abandonments. Stochastic System, 4(1):250-299.

3. Akgun, O., R. Righter, and R. Wolff. (2013) Partial flexibility in routeing and scheduling.
Adv. Appl. Prob., 45: 637-691.

4. Andradottir, S., H. Ayhan, and D.G. Down. (2011). Queueing system with synergistic
servers. Operations Research 59: 772-780.

5. Andradottir, S., H. Ayhan, and D.G. Down. (2013). Optimal assignment of servers to
tasks when collaboration is Inefficient. Queueing Systems 75: 79-110.

6. Anton, E., U. Ayesta, M. Jonckheere, and I.M. Verloop. (2020). On the stability of
redundancy models. Operations Research, Forthcoming.

7. Anton, E., U. Ayesta, M. Jonckheere, and I.M. Verloop. (2019) Redundancy with pro-
cessor sharing servers. Performance Evaluation Review 47: 15-17.

8. Anton, E., U. Ayesta, M. Jonckheere, and I.M. Verloop. (2020). Improving the per-
formance of heterogeneous data centers through redundancy. Proc. ACM Meas. Anal.
Comput. Syst. 4: 1-29.

9. Ayesta, U., T. Bodas, and I.M. Verloop. (2018) On a unifying product form framework
for redundancy models, IFIP Performance.

10. Ayesta, U., T. Bodas, and I.M. Verloop. (2018) On redundancy-d with cancel-on-start
a.k.a Join-shortest-work (d), MAMA Workshop, SIGMETRICS.

11. Bonald, T., C. Comte, and F. Mathieu (2019). Performance of balanced fairness in
resource pools: A recursive approach, ACM SIGMETRICS Perform. Eval. Rev. 46: 125-
127.

12. Cadas, A.,J. Doncel, J.-M. Fourneau, and A. Bušić, Flexibility can hurt dynamic match-
ing system performance, Preprint. https://arxiv.org/pdf/2009.10009.pdf

13. Gardner, K., S. Zbarsky, S. Doroudi, M. Harchol-Balter, E. Hyytia, and A. Scheller-Wolf.
(2016). Queueing with redundant requests: exact analysis. Queueing Systems 83:227-
259.

14. Gardner, K., M. Harchol-Balter, A. Scheller-Wolf, M. Velednitsky, and S. Zbarsky.
(2017). Redundancy-d: The power of d choices for redundancy. Operations Research
65:4, 1078-1094.

15. Gardner, K., M. Harchol-Balter, E. Hyytia, and R. Righter. (2017). Scheduling for
efficiency and fairness in systems with redundancy. Performance Evaluation 116:1-25.

16. Gardner, K., M. Harchol-Balter, A. Scheller-Wolf, and B. van Houdt. (2017). A bet-
ter model for job redundancy: Decoupling server slowdown and job size. IEEE/ACM
Transactions on Networking, 25: 3353-3367.

17. Gardner, K., and R. Righter. (2020). Product Forms for FCFS Queueing Models with
Arbitrary Server-Job Compatibilities: An Overview. Queueing Systems, 96: 3-51.

The Cost of Collaboration 31

18. Hopp, W. J. and M. P. van Oyen. (2004). Agile workforce evaluation: A framework for
crosstraining and coordination.”IIE Transactions 36: 919-940.

19. Isik, T., S. Andradottir, and H. Ayhan. (2016) Optimal control of queueing systems
with non-collaborating servers. Queueing Systems, 84: 79-110.

20. Joshi, G., E. Soljanin, G. Wornell. (2015). Queues with redundancy: Latency-cost anal-
ysis, ACM SIGMETRICS Perf. Eval. Rev. 43: 54–56.

21. Joshi, G., E. Soljanin, G. Wornell. (2017). Efficient Redundancy Techniques for La-
tency Reduction in Cloud Systems, ACM Transactions on Modeling and Performance
Evaluation of Computing Systems 2, https://doi.org/10.1145/3055281.

22. Kim, Y., R. Righter and R. Wolff. (2010) Grid scheduling with NBU service times,
Operations Research Letters, 38: 502-504.

23. Koole, G. and R. Righter. (2008) Resource Allocation in Grid Computing, Journal of
Scheduling 11: 163-174.

24. Mitzenmacher, M. (2001). The power of two choices in randomized load balancing. IEEE
Transactions on Parallel and Distributed Systems, 12(10): 1094-1104.

25. Raaijmakers, Y., S. Borst, and O. Boxma. (2019) Redundancy scheduling with scaled
Bernoulli service requirements. Queueing Systems 93: 67–82.

26. Raaijmakers, Y., S. Borst, and O. Boxma. (2020) Stability of redundancy systems with
processor sharing. VALUETOOLS ’20: Proceedings of the 13th EAI International Con-
ference on Performance Evaluation Methodologies and Tools 120–127.

27. Van Oyen, M.P., E.G.S. Gel, and W.J. Hopp. (2001) Performance opportunity for work-
force agility in collaborative and noncollaborative work systems. IIE Trans. 33: 761-777.

28. Visschers, J., Adan, I. J. B. F., and Weiss, G. (2012). A product form solution to a
system with multi-type customers and multi-type servers. Queueing Systems 70: 269–
298.

29. Wang, X., S. Andradottir, and H. Ayhan. (2015). Dynamic server assignment with task
dependent server synergy. IEEE Transactions on Automatic Control, 60: 570-575.

A Proof of Lemma 1

Lemma 1. [1,17] Suppose all the servers are busy at time 0 in NC, and let
γC(0) =st γ

NC
Q (0). Let τ be the first time after time 0 at which any server

becomes idle in NC. Then {γC(t)}τt=0 =st {γNCQ (t)}τt=0.

Proof Let γC(0) = γNCQ (0). We will couple the arrival sequences and potential
service completions for the C and NC systems after time 0; with this coupling
we will show by induction that {γC(t)}τt=0 = {γNCQ (t)}τt=0 wp 1.

Assume that γC(t) = γNQC(t). Suppose that the next event is an arrival.
Then the states for both C and NC are augmented by appending the class of
the new arrival, and the result continues to hold. Now suppose that the next
event is a potential service completion on server s. If this completion results
in a departure from system C, then the first job in the state γC of any class
i ∈ Cs is removed. In system NC, this completion results in the corresponding
job in the queue being able to start service, and thus being removed from the
state γNCQ ; a job also departs from the system in NC, but this is not reflected
in the queue state. If, on the other hand, the potential service completion on
server s does not result in a departure in system C, then server s was idle
at time t in system C. This means that none of the jobs in γC(t), and hence
also in γNCQ (t), are compatible with server s, and so when the next completion
occurs on server s in system NC, server s will become idle. At this point, we
have reached time τ .

32 Kristen Gardner, Rhonda Righter

B Additional Steady-State Results

Let P1,2 (respectively, P2,1) be the probability that both servers are idle and
that server 1 (respectively, server 2) has been idle longer.

Lemma 5 In the W model in the noncollaborative system, the probabilities
P∅, P1, P2, P1,2, P2,1 are given by

P∅ = πALIS(∅, ∅)
(

µ1

µ1 − λ1

)(
µ2

µ2 − λ2

)(
µ− λ+ λ3
µ− λ

)
P1 = πALIS(∅, ∅) µ1µ2

(µ2 − λ2)(λ1 + λ3)

P2 = πALIS(∅, ∅) µ1µ2

(µ1 − λ1)(λ2 + λ3)

P1,2 = πALIS(∅, ∅)
(

µ1

λ1 + λ3

)(µ2

λ

)
P2,1 = πALIS(∅, ∅)

(
µ2

λ2 + λ3

)(µ1

λ

)
,

where P∅ + P1 + P2 + P1,2 + P2,1 = 1.

Proof We derive the probabilities P∅, P1, P2, P1,2, P2,1 for the noncolloborative
(ALIS) W model by relating them to probabilities for the collaborative model,
as in [17]. Let πALIS(∅, ∅) be the stationary probability that both servers are
busy and no jobs are waiting in the queue under the noncollaborative ALIS
policy, let πC(∅) be the stationary probability that the system is empty for
the W model under collaboration, and let πCj (∅) be the probability that the
collaborative system is empty when the system consists only of server j and
job class j, j = 1, 2. From Lemma 2, the latter probabilities are the same as
the conditional probability that the collaborative W system is empty given
that the other server (not server j) is idle. Then, by Theorem 4.5 in [17],

πCj (∅) = 1− λj

µj
=

µj−λj

µj
, j = 1, 2, and

πC(∅) =

(
µ1 − λ1
µ1

)(
µ2 − λ2
µ2

)(
µ− λ

µ− λ+ λ3

)
.

Once we have obtained πCj (∅), j = 1, 2, and πC(∅), the result then follows
from Corollary 3.12 of [17].

We now consider the special case of the symmetric W model, in which
µ1 = µ2 = µ/2 and λ1 = λ2 = (λ−λ3)/2. In this case, class-3 jobs are equally
likely to enter service on either server, so P1(3) = P2(3) = λ3/µ, and the
expressions for P∅, P1, P2, P1,2, and P2,1 simplify nicely.

The Cost of Collaboration 33

Corollary 10 In the symmetric W model in the noncollaborative system, we
have

P∅ =
λ

µ

λ+ λ3
µ+ λ3

P1 = P2 =
λ

µ

µ− λ
µ+ λ3

P1,2 = P2,1 =
(µ− λ)(µ− λ+ λ3)

2µ(µ+ λ3)
.

Lemma 6 In the W model in the noncollaborative system, the probabilities
that server j, j = 1, 2, is working on a class-i job, i = 1, 2, 3, are given by

Pj(j) = λj/µj , j = 1, 2

P1(3) = P∅ + P2 − P1(1)

P2(3) = P∅ + P1 − P2(2).

Proof Pj(j) = λj/µj , j = 1, 2 follows from Little’s law. The overall probability
that server 1 is busy is P∅ + P2 and therefore the probability that server 1
is busy with a class-3 job is P1(3) = P∅ + P2 − P1(1); similarly, P2(3) =
P∅ + P1 − P2(2).

C Proof of Theorem 3

Theorem 4. For the W model, we can couple the systems so that, with proba-
bility 1, {NC

i (t)}∞t=0 ≥ {NNC
i (t)−1}∞t=0 for i = 1, 2, 3, {NC

i (t)+NC
3 (t)}∞t=0 ≥

{NNC
i (t) +NNC

3 (t)− 1}∞t=0 for i = 1, 2, and {NC(t)}∞t=0 ≥ {NNC(t)− 1}∞t=0.

Proof We use induction on t. Suppose all the inequalities hold at time t, and
consider the time of the next event, τ . (The result is immediately true for
t = 0).

We first show that NC
i (τ) ≥ NNC

i (τ) − 1 for i = 1, 2. This also follows
from Theorem 1, but we give an alternative, more direct, proof here. Without
loss of generality, we consider i = 1. The inequality continues to hold at
time τ if (1) τ is an arrival time, (2) τ is a potential service completion time
at server 2, or (3) τ is a potential service completion time at server 1 and
there is a class-1 job in service at server 1 in both systems; in all of these
cases the number of class-1 jobs evolves in the same way at time τ in both
systems. Now consider the case where a class-1 job is in service at time t in
NC but not in C. Then NC

1 (τ) = NC
1 (t) ≥ NNC

1 (t)−1 = NNC
1 (τ), and again,

the result continues to hold. Similarly, if a class-1 job is in service at time
t in C but not in NC, and NC

1 (t) > NNC
1 (t) − 1, then at time τ we have

NC
1 (τ) = NC

1 (t)− 1 ≥ NNC
1 (t)− 1 = NNC

1 (τ)− 1, and the result continues to
hold. Finally, we consider the case where a class-1 job is in service at time t in
C but not in NC, and NC

1 (t) = NNC
1 (t)−1. We will show by contradiction that

this case cannot occur. By observation 2, all class-1 jobs present in C are also

34 Kristen Gardner, Rhonda Righter

present in NC, and the “extra” class-1 job in NC arrived earlier than all other
class-1 jobs in either system. By the induction hypothesis, NC

3 (t) ≥ NNC
3 (t),

and again by observation 2 all class-3 jobs present in system NC at time t are
also present in system C. Because the extra job has departed in system C,
it must have arrived earlier than all class-3 jobs present in system C at time
t, and hence it arrived earlier than all class-3 jobs present in system NC at
time t. Therefore, the extra job must be in service on server 1 in system NC,
contradicting the assumption that system NC does not have a class-1 job in
service.

Now we show that NC
i (τ) + NC

3 (τ) ≥ NNC
i (τ) + NNC

3 (τ) − 1 for i = 1,
without loss of generality. As before, the only case that is not straightforward
is the case in which (i) NC

1 (t) + NC
3 (t) = NNC

1 (t) + NNC
3 (t) − 1, (ii) τ is a

potential service completion time, and (iii) the server that completes at time
τ is serving a class-1 or class-3 job in system C but not in system NC. From
(i), we know that system NC has one extra class-1 or class-3 job that is not
present in system C. From the inductive hypothesis and observations 1 and 2,
we have that, not counting the extra job, systems C and NC have the same
sets of class-1 and class-3 jobs, and system C has a superset of the class-2 jobs
present in system NC. From (iii), we have that either server 1 must be idle in
NC and not in C, or server 2 must be serving a class-3 job in C and not in
NC. We will show by contradiction that neither of these cases is possible. If
server 1 is idle in NC, then the extra job must be a class-3 job that is in service
on server 2, the extra job must be the only class-1 or class-3 job in system
NC, and there must be no clas-1 or clas-3 jobs in system C; this contradicts
(iii). Now suppose that server 2 is serving a class-3 job in C but not in NC.
By observation 3, this class-3 job must be the earliest arrival of all class-2 and
class-3 jobs in system C. By the inductive hypothesis and observations 1 and
2, this class-3 job must also have arrived before all other class-3 and class-3
jobs in system NC, with the possible exception of the extra job (if the extra
job is class-3). Thus, in system NC, either server 2 is serving the same class-3
job as in system C, or server 2 is serving the extra job. In either case, a class-3
job is in service in system NC, contradicting (iii).

Next we show NC
3 (τ) ≥ NNC

3 (τ) − 1. Again, all cases are straightforward
except for the case where NC

3 (t) = NNC
3 (t) − 1 and the event at time τ is a

service completion. In this case, the extra job in system NC is a class-3 job.
By the induction hypothesis and observations 1 and 2, excluding the extra job,
systems C and NC have the same sets of class-3 jobs, and system C contains a
superset of the class-1 jobs and class-2 jobs present in system NC. If a class-3
job is in service on at least one of the servers in system C, then we can use
a similar argument to that in the previous case to show that, in system NC,
the same class-3 job and the extra job are in service. Hence, after a service
completion at time τ , we still have NC

3 (τ) ≥ NNC
3 (τ)− 1.

Finally, we show NC(τ) ≥ NNC(τ)−1. Again, all cases are straightforward
except for the case where NC(t) = NNC(t) − 1 and the event at time τ is a
service completion. In this case, system NC has one extra job, and, from the
induction hypothesis and observations 1 and 2, all the other jobs are the same

The Cost of Collaboration 35

in both systems. We need only show that if a server is idle in system NC, then
that same server also is idle in system C; without loss of generality, we will
show this for server 1. Assume server 1 is idle in system NC. Then the extra
job is not a class-1 job and there are no other class-1 jobs in either system.
Moreover, if the extra job is a class-3 job, it is the only class-3 job in system
NC, and therefore there are no class 3 jobs in system C; thus, server 1 also
is idle in system C. If the extra job is a class-2 job, then it must have arrived
before any class-3 jobs in both systems (by observation 3), and before any
other class-2 jobs in system NC, so it is in service on server 2 in system NC.
Thus, server 1 being idle in system NC means that there are no class-3 or
class-1 jobs in system NC, and therefore also in system C, so server 1 must
also be idle in system C.

D Proofs for Section 6

Corollary 1. For the symmetric extended W model, {NC(t)}∞t=0 ≤st {NNC(t)}∞t=0.

Proof The proof is basically the same as that of Theorem 4; we just describe
the differences. Assume the definitions above, with job a being a fully flexible
job at the head of the queue at time s, and where policy π assigns job a to
just one server. The argument above shows that a policy π′ that assigns job
a to two of the available servers can be constructed that will improve upon π.
The argument can be repeated to show that assigning job a to n servers will
be better than assigning it to n− 1.

Corollary 2. For a symmetric extended W subsystem embedded in a larger
system, and considering collaboration within the subsystem, {NC(t)}∞t=0 ≤st
{NNC(t)}∞t=0.

Proof Again the argument is very similar to that of the symmetric W model.
Define π, π′, N(t), N ′(t), job a, times s and τ , and servers 1 and 2 as in the
proof of Theorem 4.

If the event at time τ is an arrival, we have {N ′(t)}∞t=0 = {N(t)}∞t=0 by
the same argument as in the proof of Theorem 4. If the event at time τ is
a potential service completion (1) at server 1, (2) at server 2 and server 2
is idle under π, (3) at server 2 and server 2 is serving a job of the same
class as job a under π, or (4) at server 2 and server 2 is serving a dedicated
job, then, using the same argument as in the proof of Theorem 4, we have
{N ′(t)}∞t=0 ≤ {N(t)}∞t=0.

For the extended W model, we have one additional case, in which there
is a potential service completion at server 2 at time τ and under π a job of
class i > M + 1 completes service. Let us call the job that completes under
π job d. Now the states just after time τ under the two policies are the same
except that π still has job a while π′ still has the more flexible job d. Let π′

agree with π from time τ on, treating job d the same way π treats job a. Then
{N ′(t)}∞t=0 = {N(t)}∞t=0.

36 Kristen Gardner, Rhonda Righter

Corollary 3. For the symmetric nearest neighbor model, {NC(t)}∞t=0 ≤st
{NNC(t)}∞t=0.

Proof Here again the argument is as in the proof of Theorem 4, with the same
definitions, except that, as in the proof of Corollary 4, we have an additional
case for the potential service completion at time τ : that server 2 completes
service and the job it is serving under π (which we call job e) is flexible, but is
of a different class than job a. Then the states under π and π′ will be the same
just after time τ except that job a is present under π and job e is present under
π′. Note that π has chosen to serve job a on server 1 only, so that henceforth
π will treat a as a dedicated job on server 1. Let π′ assign job e to server 2
only, so that it treats job e as a dedicated job for server 2. Then let us swap
the labels of servers 1 and 2 under π′ and let π′ agree with π from time τ on.
As in the proof of Theorem 4, we can swap the server labels without loss of
generality because of the symmetry of our system and policies, and because
we have not conditioned on the state of the queue beyond the first job in the
queue and the total number of jobs. Again we have {N ′(t)}∞t=0 = {N(t)}∞t=0.

Corollary 4. For the symmetric M model, {NC(t)}∞t=0 ≤st {NNC(t)}∞t=0.

Proof The proof is similar to that of Theorem 4; we define π, π′, N(t), and
N ′(t) in the same way. Suppose that π and π′ have behaved identically up
until some time s, and let job a be the first job of its class in the system at
time s (without loss of generality, assume class 2). We will consider two cases:
the case in which, at time s, π assigns job a to server 3 only and π′ assigns
job a to both servers 2 and 3, and the case in which, at time s, π assigns job
a to server 2 only and π′ assigns job a to both servers 2 and 3. In both cases,
we assume that π′ agrees with π for the assignment to server 1. Let τ be the
time of the next event after time s. If τ is either an arrival or a potential
service completion on server 1, in both of the above cases we continue to have
{NC(t)}∞t=0 = {NNC(t)}∞t=0.

We now consider the case in which π assigns job a to server 3 and π′

assigns job a to both servers 2 and 3. We have three cases for the event at
time τ . First, suppose τ is a potential service completion time on server 3.
Then job a departs under both policies, and, letting π′ agree with π from time
τ on, we have {NC(t)}∞t=0 = {NNC(t)}∞t=0. Second, suppose τ is a potential
service completion time on server 2, and server 2 is idle under π. Then at
time τ , job a departs under π′ but not under π. Let π′ idle server 3 while
π schedules job a on server 3, and let the two policies agree otherwise. Then
{N ′(t)}∞t=0 ≤ {N(t)}∞t=0. Third, suppose τ is a potential service completion
time on server 2, and server 2 is serving a class 2 job under π; call this job b.
Then, just after time τ , the system state is the same under π and π′ except
that job a is the first class-2 job under π and job b is the first class-2 job under
π′. Let π′ treat job b the same way π treats job a (assigning it to server 3
only) and otherwise agree with π, and again {N ′(t)}∞t=0 = {N(t)}∞t=0.

We now consider the case in which π assigns job a to server 2 and π′ assigns
job a to both servers 2 and 3 (and the two policies agree on the assignment at

The Cost of Collaboration 37

server 1). We have three cases for the event at time τ . First, if τ is a potential
service completion time at server 2, then job a departs under both policies and
{NC(t)}∞t=0 = {NNC(t)}∞t=0. Second, if τ is a potential service completion time
at server 3 and either server 3 is idle under π or server 3 is serving a class-2
job under π, then we can use the argument above to obtain {N ′(t)}∞t=0 ≤
{N(t)}∞t=0. Third, suppose that τ is a potential service completion time at
server 3 and π assigns a class-1 job, which we call job b, to server 3 at time s.
The argument above shows that π should also assign job b to server 1, hence
we can assume that π assigns job b to both server 1 and server 3. Hence we
know that, at time s, there is at least one job of each type under both policies,
that π collaborates on the first class-1 job, and that π′ collaborates on the first
class-2 job. Because the system and policies are symmetric, and because we
have not conditioned on the system state beyond the presence of jobs a and
b, we can let π′ swap the labels of the two job classes. Letting π′ agree with π
from time τ on, we obtain {N ′(t)}∞t=0 = {N(t)}∞t=0.

