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Abstract Recent computer systems research has proposed using redundant requests
to reduce latency. The idea is to run a request on multiple servers and wait for the first
completion (discarding all remaining copies of the request). However, there is no exact
analysis of systems with redundancy. This paper presents the first exact analysis of
systems with redundancy. We allow for any number of classes of redundant requests,
any number of classes of non-redundant requests, any degree of redundancy, and any
number of heterogeneous servers. In all cases we derive the limiting distribution of
the state of the system. In small (two or three server) systems, we derive simple forms
for the distribution of response time of both the redundant classes and non-redundant
classes, and we quantify the “gain” to redundant classes and “pain” to non-redundant
classes caused by redundancy. We find some surprising results. First, the response
time of a fully redundant class follows a simple exponential distribution and that of the
non-redundant class follows a generalized hyperexponential. Second, fully redundant
classes are “immune” to any pain caused by other classes becoming redundant. We
also compare redundancy with other approaches for reducing latency, such as optimal
probabilistic splitting of a class among servers (Opt-Split) and join-the-shortest-queue
(JSQ) routing of a class. We find that, in many cases, redundancy outperforms JSQ
and Opt-Split with respect to overall response time, making it an attractive solution.
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1 Introduction

Reducing latency has always been a primary concern for computer systems designers.
Recent papers have proposed a new approach to reducing latency in multi-server sys-
tems: using redundant requests [2,3,10,28,35]. The motivation behind this approach
comes from the observation that response times at servers can be highly vari-
able [12,35]. Two servers in the same system often differ in their current loads, their
network congestion, and the configuration of their storage systems. Even if both servers
are idle, the same request might experience a far lower service time at one server than
another, for example because the disk seek time could be much lower at one server
than another (seek times often dominate service times [19]). The solution is to send
the same request to the queues at multiple servers simultaneously (i.e., redundantly).
When any copy of the request completes service, all remaining copies of the request
are killed.

Using redundant requests is not free. First, data must be replicated among the set of
servers to which the copies must be sent. Furthermore, using redundant requests adds
to the system load. Nonetheless, using redundant requests has been shown to vastly
improve latency in distributed systems, for example, Google’s BigTable service shows
a 20-fold improvement in tail latency using redundant requests [12].

Unfortunately, there is almost no work analyzing the benefits of redundant requests.
Even a two-server system with one redundant class and one non-redundant class has
not been analyzed. The first attempts to analyze systems with redundancy are as recent
as 2014, but this work derives only bounds and approximations [21].

Redundant requests require a new queueing paradigm: there is no longer a sin-
gle copy of each job, and redundant copies disappear instantly as soon as one copy
completes. While redundant jobs bear some resemblance to fork–join systems, the
two models are actually quite different because all copies must complete service in a
fork–join system, whereas a redundant job only needs one copy to complete. Likewise,
while redundant jobs bear some resemblance to coupled processor systems, they differ
in that the redundant copies can occupy multiple servers even when these servers have
non-empty queues. Likewise, redundant jobs are not the same as flexible servers (see
Sect. 2 for more details).

Fig. 1 The general redundancy
model. Each server j provides
service at rate μ j . Each class of
jobs Ci arrives to the system as a
Poisson process with rate λCi
and joins the queue at all servers
in SCi =
{ j | server j can serve class Ci }
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Fig. 2 a The N model. Class A jobs join the queue at server 2 only, while class R jobs are redundant at
both servers. b The W model. Class A jobs join the queue at server 1 only, class B jobs join the queue at
server 2 only, and class R jobs are redundant at both servers. c TheM model. Class R1 jobs are redundant
at servers 1 and 2, and class R2 jobs are redundant at servers 2 and 3

The state space required to capture systems with redundant jobs is very complex.
It is not enough to know the number of jobs in each queue, or even the number of jobs
of each class (redundant or non-redundant) within each queue. Rather, one needs to
track the exact position and type of every job in every queue, so that one knows which
jobs to delete when a copy of a redundant job completes service.

This paper provides the first closed-form exact analysis of redundant queues. We
derive the limiting distribution of the full queue state as well as (in some cases) the
distribution of response time of each class of jobs. Our analysis assumes exponential
service times and Poisson arrivals. Our result applies to systems with any number of
queues, k, any number of classes of jobs, �, and any redundancy structure (see Fig. 1).
A class of jobs is associated with a set of servers that hold replicated data; the jobs of
a class can be run on any of the servers associated with the class.

We also investigate how the approach of redundant requests compares to other
common approaches for job assignment. For example, how does making m redundant
copies of each request compare with optimally probabilistically splitting load among
m queues (Opt-Split), or with joining the shortest of m queues (JSQ)? Furthermore,
while redundancy may benefit the redundant class, what is the response time penalty
to the other jobs in the system? Do other approaches create less of a penalty? Finally,
if one class of jobs creates redundant copies, does that class suffer when others “join
the redundancy game” and start creating redundant copies of their jobs as well?

We first investigate these questions in the context of three simple models, shown in
Fig. 2. In theNmodel (Fig. 2a), there are two arrival streams of jobs, each with its own
server. However, one class is redundant at both servers. The N model illuminates the
response time benefit to the redundant class and the pain to the non-redundant class.
We derive the exact distribution of response time for both classes, and explore what
happens when the non-redundant class decides that it too wants to become redundant.
In theWmodel (Fig. 2b), we imagine that we have a stable system, where each server
is serving its own stream of jobs, when a new stream of jobs arrives which can be
processed at either server. We ask how to best deal with this new stream: redundancy,
splitting, or dispatching to the shortest queue? We then turn to theMmodel (Fig. 2c),
where there is a “shared server,” which can be used by all request streams. We ask
how best to use this shared resource.

After exploring these questions for small systems, we turn to issues of scale, inves-
tigating scaled versions of the N, W, and M models. We use our exact closed-form
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limiting distribution to derive the response time distribution for a fully redundant class
in any size system.

The remainder of this paper is organized as follows. In Sect. 2 we describe related
work and how it differs from the present work. In Sect. 3 we formalize our model and
state our main theorem for the general system. In Sects. 4, 5, and 6 we discuss detailed
results for the N, M, and W models. Section 7 addresses how these models scale as
the number of servers increases. In Sect. 8 we consider what happens when we relax
our modeling assumptions. In Sect. 9 we conclude.

2 Prior work

In this section we review several models that are related to redundant requests. All
of these models differ from ours in critical ways that change both the mathematical
techniques available to analyze the system, and the results obtained. Nonetheless, we
hope that the results in this paper might shed some light on the problems below, many
of which are notoriously difficult.

Coupled processor/cycle stealing

In a coupled processor system, there are two servers and two classes of jobs, A and
B. Server 1 works on class A jobs in FCFS order, and server 2 works on class B
jobs in FCFS order. However, if there are only jobs of one class in the system, the
servers “couple” to serve that class at a faster rate: unlike in the redundancy model,
class A jobs only get to use server 2 when the system is empty of Bs (and vice
versa). Generating functions for the stationary distribution of the queue lengths in a
two-server system with exponential service times were derived in [13,24], but this
required solving complicated boundary value problems and provided little intuition
for the performance of the systems. The stationary distribution of the workload in the
two-server systemwas derived in [11] using a similar approach. In [18], a power-series
approach was used to numerically compute the queue-length stationary distribution
in systems with more than two servers under exponential service times. Much of the
remainingwork on coupled processormodels involves deriving bounds and asymptotic
results (for example, [7]).

In the donor–beneficiary model (one-way cycle stealing), only one class of jobs
(the beneficiary) receives access to both servers, typically only when no jobs of the
other class are present. In addition, if there is only one beneficiary job present, one
server must be idle (the servers do not “couple”). The donor–beneficiary model has
been studied, in approximation, in a variety of settings [17,27]. However, it differs
from the redundancy model because a job is never in service at more than one server,
and because donor jobs often have full preemptive priority at their server.

Fork–join

Another related model is the fork–join system, in which each job that enters a system
with k servers splits into k pieces, one of which goes to each server. The job is
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considered complete only when all k pieces have completed service. This is different
from the redundancymodel because only one redundant request needs to finish service
in the redundancy model. Furthermore, a fork–join job sends work to all k servers,
whereas a redundant job of class Ci only sends copies to the servers in SCi , where
SCi is a subset of the k servers. The fork–join model is known to be very difficult
to analyze. Many papers have derived bounds and approximations for such a system
(for example, [4,5,23,26,37]). Exact analysis remains an open problem except for the
two-server case [14,15]; see [9] for a more detailed overview.

Flexible server systems

A third related model is the flexible server system, in which each class of jobs has
its own queue, and each server can serve some subset of classes. The design and
performance of flexible server systems has been studied in [6,31–33]. In a flexible
server system, traditionally, when a server becomes available it chooses the queue
from which to take its next job according to some policy. By contrast, in redundancy
systems, each server has its own FCFS queue and jobs are routed to a subset of servers
upon arrival. The key difference between flexible server systems and redundancy
systems is that redundant jobs may be served by multiple servers simultaneously,
whereas in a flexible server system each job may be processed by only one server.

A special case of the flexible server system uses the following policy. When a
server becomes available, it chooses the job that arrived earliest from among the jobs
it can serve. This policy is similar to the redundant system because each server works
in FCFS order among the jobs it can serve. However, there are no redundant jobs
in this flexible server system; jobs cannot be in service at two servers at once. For
this model, under a specific routing assumption when an arriving job sees multiple
idle servers, the stationary distribution that satisfies the balance equations is given
[1,34]. Our redundancy model requires no such routing assumption, because arriving
redundant jobs enter service at all idle servers. Finally, mean response times are lower
in a redundant system than in an FCFS flexible server system; our exact analysis allows
us to quantify this performance gap.

Redundancy models

Recently, in 2012, the (n, k, r) system was proposed [29], where there are n servers,
and each job sends a request to k ≤ n of these servers. When r ≤ k requests complete,
the job is considered finished. If we view the k requests as k “redundant” copies of a
job, the problem can be seen as similar to ours, although in our model, jobs can only
be redundant at specific subsets of servers. Various bounds and approximations have
been derived for the (n, k, r) model [20,21,29], and the optimal value of k has been
determined for different system loads and costs of deleting extra redundant requests
[30]. Additionally, other variants have been proposed where a job might wait before
issuing redundant requests [36]. Unfortunately, the only exact analysis of the (n, k, r)
system is for a highly simplified model in which each server is actually an M/M/∞
queue, so there is no queueing [20].
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In the special case r = 1, whichmostly closely matches our model, approximations
have been found assuming that the queues are independent [35]. The optimal degree
of replication and the optimal service discipline also have been studied [25].

3 Model

We consider a system with k servers, denoted as 1, 2, . . . , k, and � classes of jobs,
denoted as C1, C2, . . . , C�. (see Fig. 1). The service time at server j is distributed
exponentially with rate μ j for all 1 ≤ j ≤ k, and each server processes the jobs in its
queue in FCFS order. Each class of jobs Ci arrives to the system as a Poisson process
with rate λCi , and replicates itself by joining the queue at some fixed subset of the
servers SCi = { j | server j can serve class Ci }. Jobs in class Ci cannot join the queue
at any server j /∈ SCi . A job may be in service at multiple servers at the same time; if
a job is in service at both servers i and j , it receives service at combined rate μi +μ j .

Looking at Fig. 1, it is difficult to figure out an appropriate state space. One might
think that you could track the number of jobs of each class at each queue, but this
state space is missing information about which specific jobs are in multiple queues.
Furthermore, servers are not independent, and job classes are not independent, so
typical product-form type state spaces and solutions are unlikely to work.

The key insight that allows us to model this system is that we can view the system
as having a single central queue in which all jobs wait in the order that they arrived (see
Fig. 3). Each server processes jobs from this central queue in FCFS order, skipping
over those jobs it cannot serve. For example, in Fig. 3, server 3 will skip over job A(1)

and move to job B(1) when choosing its next job. We can write the state of the system
as (cn, cn−1, . . . , c1), where there are n jobs in the system, and ci is the class of the
i th job in this central queue; c1 is the class of the job at the head of the queue, which
is also in service at all servers in SC1 .

Theorem 1 When ∀ C ⊆ {C1, . . . ,C�},
∑

C∈C
λC <

∑

m∈ ⋃
C∈C

SC

μm,

the system is stable, and the limiting probability of being in state (cn, cn−1, . . . , c1)
is

π(cn ,...,c1) = C
n∏

i=1

λci∑
m∈ ⋃

j≤i
Sc j

μm
,

where C is a normalizing constant.

Proof Deferred to the end of the section. ��
Although π(cn , cn−1,..., c1) looks like a product-form solution, it is not; we cannot

write the limiting probabilities as a product of independent marginal per-server terms,
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Fig. 3 Let A and B be two job classes, where A(i) is the i th arrival of class A. We can view the general
redundancy system (left) as having a single central queue from which each server works in FCFS order,
skipping over those jobs it cannot serve (right). The central queue is an interleaving of the individual servers’
queues, where each job appears only once, and appears in the order in which it arrived

or as a product of independent marginal per-class terms. In fact, the form is quite
unusual, as illustrated in Example 1.

Example 1 Consider the system shown in Fig. 3. Here, the current state is (A, B, A),
where the head of the queue is at the right, job A(1) is currently in service at servers
1 and 2, and job B(1) is currently in service at server 3. From Theorem 1, the limiting
probability of this state is

π(A,B,A) = C

(
λA

μ1 + μ2

) (
λB

μ1 + μ2 + μ3

)(
λA

μ1 + μ2 + μ3

)
.

Note that the denominator for the first class-A job isμ1+μ2 whereas the denominator
for the second class-A job is μ1 + μ2 + μ3. The denominator for the i th job in the
queue depends on the classes of all jobs ahead of it, and so the limiting probability
cannot be written as a product of per-class terms.

In Sects. 4, 5, and 6 we use the result of Theorem 1 to study the N, W, and M

models, defined below.

N Model

The N model is the simplest non-trivial example of a redundancy system where there
are both redundant and non-redundant classes. In an N model there are two servers
running at rates μ1 and μ2 and two classes of jobs (see Fig. 2a). Class A jobs are non-
redundant; they arrive with rate λA and join the queue at server 2 only (SA = {2}).
Class R jobs are redundant; they arrive with rate λR and join the queue at both servers
(SR = {1, 2}).

W Model

Consider a two-server, two-class system in which each class of jobs has its own
dedicated server (no redundancy). Now suppose that a third class of jobs enters the

123



Queueing Syst

system and chooses to be redundant at both servers. TheWmodel helps us understand
how the presence of this redundant class affects the existing non-redundant classes.
In a W model, there are two servers running at rates μ1 and μ2 and three classes of
jobs (see Fig. 2b). Class A jobs arrive with rate λA and join the queue at server 1
only (SA = {1}), class B jobs arrive with rate λB and join the queue at server 2 only
(SB = {2}), and class R jobs arrive with rate λR and join the queue at both servers
(SR = {1, 2}).

M Model

Again consider the two-server, two-class system in which each class of jobs has its
own dedicated server. Suppose that a new server is added to the system and all jobs
issue redundant requests at this server. The M model helps us understand how best
to use the new server. In an M model, there are three servers with rates μ1, μ2, and
μ3 and two job classes (see Fig. 2c). Class R1 jobs arrive with rate λR1 and join the
queue at servers 1 and 2 (SR1 = {1, 2}), and class R2 jobs arrive with rate λR2 and
have SR2 = {2, 3}.

3.1 Proof of Theorem 1

Proof (Theorem 1) The stability condition can be seen as a generalization of Hall’s
Theorem [16], where the proof follows from max-flow–min-cut. To prove the forma-
tion of the limiting probabilities, we begin by writing local balance equations for our
states.

The local balance equations are:

A ≡ Rate entering state (cn , . . . , c1) = Rate leaving state ≡ A′
due to an arrival (cn , . . . , c1) due to a departure

Bc ≡ Rate entering state = Rate leaving state ≡ B′
c

(cn , . . . , c1) due (cn , . . . , c1) due to
departure of class c to an arrival of class c

For an empty system, the state is (). It is not possible to enter state () due to an arrival
or to leave due to a departure, so we only have one local balance equation of the form
Bc = B ′

c:

π()λc = π(c)

∑

m∈Sc
μm . (1)

For any other state (cn, cn−1, . . . , c1), we have local balance equations of the form

A = π(cn−1,...,c1)λcn = π(cn ,...,c1)

∑

m∈⋃
j≤n Sc j

μm = A′ (2)
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Bc =
n∑

i=0

∑

m∈Sc,
m /∈Sc j ,
1≤ j≤i

π(cn ,...,ci+1,c,ci ,...,c1)μm = π(cn ,...,c1)λc = B ′
c. (3)

We guess the following form for π(cn ,...,c1):

π(cn ,...,c1) = C
n∏

i=1

λci∑
m∈ ⋃

j≤i
Sc j

μm
. (4)

We will prove inductively that our guess satisfies the balance equations. The base
case is state (). Substituting the guess from (4) into the left-hand side of (1), we get

π(c)

∑

m∈Sc
μm = C

λc∑
m∈Sc

μm

∑

m∈Sc
μm

= Cλc
= π()λc,

which is exactly the right-hand side of (1), letting C = π().
Now, assume that (2) and (3) hold for some n−1 ≥ 0. We will show that both hold

for n.

1. A = A′. From (2), we have

A = π(cn−1,...,c1)λcn = C
n−1∏

i=1

λci∑
m∈ ⋃

j≤i
Sc j

μm
λcn

= π(cn ,...,c1)

∑
m∈ ⋃

j≤n
Sc j

μm

λcn
λcn

= π(cn ,...,c1)

∑

m∈ ⋃
j≤n

Sc j

μm

= A′.

2. Bc = B′
c. From (3), we have

Bc =
n∑

i=0

∑

m∈Sc,
m /∈Sc j ,
1≤ j≤i

π(cn ,...,ci+1,c,ci ,...,c1)μm
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=
n−1∑

i=0

∑

m∈Sc\ ⋃
j≤i

Sc j

π(cn ,...,ci+1,c,ci ,...,c1)μm +
∑

m∈Sc\ ⋃
j≤n

Sc j

π(c,cn ,...,c1)μm

=
n−1∑

i=0

∑

m∈Sc\ ⋃
j≤i

Sc j

λcnπ(cn−1,...,ci+1,c,ci ,...,c1)∑
t∈ ⋃

j≤n
Sc j

⋃
Sc μt

μm + C

λc
∑

m∈Sc\ ⋃
j≤n

Sc j
μm

∑
m∈ ⋃

j≤n
Sc j

⋃
Sc μm

n∏

i=1

λci∑
m∈ ⋃

j≤i
Sc j

μm

= λcn∑
m∈ ⋃

j≤n
Sc j

⋃
Sc

μm

n−1∑

i=0

∑

m∈Sc\ ⋃
j≤i

Sc j

π(cn−1,...,ci+1,c,ci ,...,c1)μm

+ λcπ(cn ,...,c1)

∑
m∈Sc\ ⋃

j≤n
Sc j

μm

∑
m∈ ⋃

j≤n
Sc j

⋃
Sc μm

= λcn∑
m∈⋃

j≤n Sc j
⋃

Sc μm
π(cn−1,...,c1)λc + λcπ(cn ,...,c1)

∑
m∈Sc\⋃ j≤n Sc j

μm
∑

m∈⋃
j≤n Sc j

⋃
Sc μm

= Cλc
λcn∑

m∈⋃
j≤n Sc j

⋃
Sc μm

n−1∏

i=1

λci∑
m∈⋃

j≤i Sc j
μm

+ λcπ(cn ,...,c1)

∑
m∈Sc\⋃ j≤n Sc j

μm
∑

m∈⋃
j≤n Sc j

⋃
Sc μm

= λcπ(cn ,...,c1)

∑
m∈⋃

j≤n Sc j
μm

∑
m∈⋃

j≤n Sc j
⋃

Sc μm
+ λcπ(cn ,...,c1)

∑
m∈Sc\⋃ j≤n Sc j

μm
∑

m∈⋃
j≤n Sc j

⋃
Sc μm

= λcπ(cn ,...,c1)

= B ′
c.

Hence the local balance equations hold for all n, and so the guess for the limiting
probabilities from (4) is correct. ��

4 The N model

We first turn our attention to the N model (Fig. 2a). An immediate consequence of
Theorem 1 is Lemma 1, which gives the limiting distribution of the N model.

Lemma 1 In theNmodel, the limiting probability of being in state (cn, cn−1, . . . , c1)
is

π(cn ,...,c1) = CN

(
λA

μ2

)a0 (
λR

μ1 + μ2

)r (
λA

μ1 + μ2

)a1
,

where a0 is the number of class A jobs before the first class R job, a1 is the number
of class A jobs after the first class R job, r is the total number of class R jobs in the

queue, and CN =
(
1 − λA

μ2

) (
1 − λR

μ1+μ2−λA

)
is a normalizing constant.

Weuse this result to find (Theorem2) that for the redundant class (class R), response
time is exponentially distributed, which is pleasantly surprising because the system is
not anM/M/1 queue. Specifically, the distribution of response time is the same as that in
anM/M/1 queue where the arrival rate is λR and the service rate isμ′ = μ1+μ2−λA.
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Note that μ′ can be viewed as giving the R jobs the full μ1, and the portion of μ2 that
is not appropriated for the class A jobs (μ2 − λA). Equivalently, this is the response
time in an M/M/1 queue with arrival rate λA + λR and service rate μ1 + μ2.1

Theorem 2 In the N model,

1. Thenumberof class R jobs in the system, NR, is distributedasGeometric(1−ρ)−1,
where ρ = λR

μ1+μ2−λA
.

2. The response time of class R jobs, TR, is distributed as Exp(μ1 +μ2 −λA −λR).

Proof This is a special case of the more general result in Theorem 10, which is proved
in Sect. 7.1. ��

In Theorem 3, we find that the response time for the non-redundant class, TA,
follows a generalized hyperexponential distribution2. We can view the mean response
time of class A jobs as that of an M/M/1 queue with arrival rate λA and service rate
μ2, plus a penalty term that captures the extent to which the redundant jobs hurt the
As (Eq. 7). In Sect. 4.2 we give an alternative interpretation for TA which provides
intuition for this penalty term.

Theorem 3 In the N model,

1. The number of class A jobs in the system, NA, has p.m.f.

Pr{NA = nA} = ζN1

(
λA

μ2

)nA

+ ζN2

(
λA

μ1 + μ2 − λR

)nA

, (5)

where

ζN1 = CN

(
μ1

μ1 − λR

)
,

ζN2 = CN

(
λR

μ1 + μ2 − λR
− λR

μ1 − λR

)
,

and CN is as in Lemma 1.
2. The distribution of response time of class A jobs is

TA ∼ H2(νN1, νN2, ωN),

1 This is counterintuitive because, as we will see in Lemma 3, the distribution of response time for class R
does not depend on whether class A is redundant or non-redundant.
2 A generalized hyperexponential H2(ν1, ν2, ω) is defined as the weighted mixture of two exponentials
with rates ν1 and ν2, where the first exponential is given weight 1+ ω and the second is given weight −ω.
Note that ω can be any real number; it need not be a probability [8].
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(a) (b)
Fig. 4 Comparing mean response time before and after class R becomes redundant when μ1 = μ2 = 1
and λA = λR for a class R, and b class A. The mean response time for the overall system is the weighted
average of these two classes

where

νN1 = μ2 − λA,

νN2 = μ1 + μ2 − λA − λR,

νN3 = μ1 + μ2 − λA, (6)

ωN = λRνN1

(μ1 − λR)νN3
.

The expected response time of class A jobs is

E[TA] = 1

νN1︸︷︷︸
M/M/1

+ 1

νN2
− 1

νN3︸ ︷︷ ︸
penalty

. (7)

Proof Deferred to the end of the section. ��
Figure 4 compares mean response time before class R jobs become redundant

(each class sees its own independent M/M/1 queue), and after class R jobs become
redundant. We hold μ1 = μ2 = 1 and vary the load by increasing λR = λA. We find
redundancy helps class R jobs by a factor of two (Fig. 4a), but can hurt class A by up
to 50 % (Fig. 4b).

In Lemma 3, we ask what happens if class A jobs decide they too should be redun-
dant. That is, all jobs can be served at both servers—the system is fully redundant.
This transforms the system into anM/M/1 queue with arrival rate λA +λR and service
rate μ1 + μ2 (Lemma 2). Surprisingly, class R is immune to pain when class A also
becomes redundant: as Lemma 3 shows, the distribution of response time for class
R is the same before and after class A becomes redundant. Of course, when the As
become redundant, they receive the benefit of having two servers.

Lemma 2 The fully redundant system, in which all jobs issue redundant requests at
both servers, is equivalent to an M/M/1 queue with arrival rate λA + λR and service
rate μ1 + μ2.
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Proof In the fully redundant model, all jobs enter the FCFS queue at both servers and
depart from both servers immediately upon completion at either server. This is exactly
an M/M/1 queue with arrival rate λA + λR and service rate μ1 + μ2. ��
Lemma 3 With respect to response time, both classes of jobs do at least as well in
the fully redundant model as in the N model. In particular,

1. E[TA]Fully Redundant ≤ E[TA]Redundant
2. T Fully Redundant

R
d= TRedundant

R .

Proof From Theorem 2, in theNmodel, TR ∼ Exp(μ1 +μ2 −λA −λB), which is the
response time distribution in an M/M/1 queue with arrival rate λA + λR and service
rate μ2 + μ2. From Theorem 3, in the N model,

E[TA] = 1

μ1 + μ2 − λA − λR
+ 1

μ2 − λA
− 1

μ1 + μ2 − λA
,

which is at least the mean response time in an M/M/1 queue with arrival rate λA + λR

and service rate μ1 + μ2 since 1
μ2−λA

− 1
μ1+μ2−λA

is non-negative. ��
Going back to theNmodel with only one redundant class, redundancy clearly helps

the redundant class considerably. But there are alternative latency-reducing strategies.
For example, each redundant class could optimally probabilistically split jobs among
all allowable servers (Opt-Split), or join the shortest queue among allowable servers
(JSQ).

In Fig. 5, we compare these other options for theNmodel, where themean response
times under Opt-Split are derived analytically (Definition 1), but JSQ is simulated.
We find that, for the redundant class R, redundancy beats JSQ, which beats Opt-Split.
Redundancy often is not much better than JSQ, yet they can differ by a factor of 2,
depending on the load of class R and the relative server speeds.

Surprisingly, the non-redundant class A often prefers redundancy of the other class
to Opt-Split or JSQ. This is because the non-redundant class wants the redundant class
to spend as little time as possible blocking the A jobs at server 2, and redundancy helps
with this.

Note that under Opt-Split we see an inflection point in mean response time for both
class R and class A. For example, in Fig. 5a, b, there is an inflection point at λR = 0.6,
when λR = λA. This phase change occurs because when λR < λA no class R jobs
go to server 2 under Opt-Split, but when λR > λA the Rs compete with the As. Also
observe that E[T ] is not monotonically increasing; this is because as λR increases, the
redundant class contributes more to the weighted average.

From the overall system’s perspective, redundancy is always preferable to Opt-Split
and JSQ because it optimizes overall server utilization.

When μ1 = μ2, even when non-redundant jobs prefer Opt-Split, redundancy is
never more than 50 % worse than Opt-Split for the non-redundant jobs (Theorem 4).

Definition 1 Under Opt-Split, a fraction p of class R jobs go to server 2, and a fraction
1 − p go to server 1, where p is chosen to minimize E[T ]. The mean response times
for class R jobs, class A jobs, and the system are respectively:
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

E[TR] when μ1 = μ2 E[TA] when μ1 = μ2 E[T ] when μ1 = μ2

E[TR] when 2μ1 = μ2 E[TA] when 2μ1 = μ2 E[T ] when 2μ1 = μ2

E[TR] when μ1 = 2μ2 E[TA] when μ1 = 2μ2 E[T ] when μ1 = 2μ2

Fig. 5 Comparing redundancy (solid blue), Opt-Split (dashed green), and JSQ (dashed red) for the N

model as λR increases with λA = 0.6. We plot mean response time for the redundant R class (left column),
the non-redundant A class (middle column), and the overall system (right column). Rows represent different
ratios of server speeds (Color figure online)

E[TR]Opt−Split = 1 − p

μ1 − (1 − p)λR
+ p

μ2 − λA − pλR
,

E[TA]Opt−Split = 1

μ2 − λA − pλR
,

E[T ]Opt−Split = λA

λA + λR
E[TA]Opt−Split + λR

λA + λR
E[TR]Opt−Split.

Theorem 4 If μ1 = μ2, then the following are true:

1. 1
2 ≤ E[TR ]Redundant

E[TR ]Opt−Split ≤ 1. If λR > λA, then
E[TR ]Redundant
E[TR ]Opt−Split = 1

2 .

2. E[TA]Redundant
E[TA]Opt−Split ≤ 3

2 .

3. 1
2 ≤ E[T ]Redundant

E[T ]Opt−Split ≤ 1.

Proof Deferred to the end of the section. ��
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4.1 Why redundancy helps

The analysis presented above demonstrates that redundancy leads to a significant
response time improvement for both redundant class R jobs and non-redundant class
A jobs. Redundancy helps because it takes advantage of two sources of variability in
the system.

First, queueing times can be very different at different servers. Sending redundant
requests enables a job to wait in multiple queues and therefore to obtain the shortest
possible queueing time. The queueing time experienced under redundancy is even
better than that under JSQ because JSQ considers only the number of jobs in the
queue, not the actual duration of work in the queue. In fact, redundancy can be seen
as obtaining the same queueing time benefit as the least work left (LWL) dispatching
policy, which assumes that job sizes are known in advance and an arriving job is
dispatched to the queue with the least work. Importantly, redundancy achieves the
LWL queueing time benefit without having to know job sizes.

The second source of variability that redundancy leverages is variability in the
same job’s service times on different servers. If a job is in service at multiple servers
at the same time, it may experience very different service times on these different
servers. The job departs the system as soon as its first copy completes service, so it
receives the minimum service time across many servers. The benefits of inter-server
variability are unique to redundancy. Policies such as JSQ and LWL, which dispatch
only one copy of each job, do not take advantage of the potential response time gains
from running multiple copies of the same job. Hence even though JSQ and LWL load
balance successfully to overcome queueing time variability, redundancy provides even
lower response times by also leveraging service time variability.

4.2 Alternative interpretation of TA

From Theorem 3, we know that TA follows a generalized hyperexponential distribu-
tion. The Laplace transform of TA is

T̃A(s) = (1 + ωN)
νN1

νN1 + s
− ωN

νN2

νN2 + s
, (8)

where νN1, νN2, and ωN are as defined in (6). An alternative way of writing the
transform is

T̃A(s) =
(

μ1 + μ2 − λA − λR

μ1 + μ2 − λA − λR + s

)(
μ1 + μ2 − λA + s

μ1 + μ2 − λA

) (
μ2 − λA

μ2 − λA + s

)
.

(9)
Note that the Laplace transform of response time in an M/M/1 queue with arrival

rate λ and service rate μ is

T̃ (s) = μ − λ

μ − λ + s
,
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and the Laplace transform of queueing time in such an M/M/1 queue is

T̃Q(s) =
(

μ − λ

μ − λ + s

) (
μ + s

μ

)
.

Hence we can interpret the response time for class A jobs in the N model as con-
sisting of two components:

1.
(

μ1+μ2−λA−λR
μ1+μ2−λA−λR+s

) (
μ1+μ2−λA+s
μ1+μ2−λA

)
is the transform of the queueing time in an

M/M/1 queue with arrival rate λR and service rate μ1 + μ2 − λA.

2.
(

μ2−λA
μ2−λA+s

)
is the transform of the response time in an M/M/1 queue with arrival

rate λR and service rate μ2.

The intuition behind this result is as follows. Consider a tagged class A job arriving
to the N system. The tagged A sees both class A jobs and class R jobs ahead of it in
the queue. We first consider the work made up of class R jobs. Before the class A job
can enter service, all class R jobs ahead of it must depart from the system. Thus an
arriving A jobs has to wait behind all work in its queue made up of class R jobs. That
total work is the same as the queueing time that a class R arrival would experience.
Hence the first thing the class A job experiences is the queueing time for a class R
job. From Theorem 2, we know that class R jobs experience the same response time
distribution as in an M/M/1 queue with arrival rate λR and service rate μ1 +μ2 −λA.
Hence the class A job first experiences the queueing time in such an M/M/1 queue.

After all of the class R jobs ahead of the tagged class A job depart, there may still
be other As ahead of the tagged job. Hence the tagged A then experiences the response
time in a dedicated class-A M/M/1 queue with arrival rate λA and service rate μ2.

4.3 Proofs for N model

Proof (Theorem 3) We first consider the case nA = 0, noting that there can be any
number of R jobs in the system.

Pr{NA = 0} = CN

∞∑

i=0

(
λR

μ1 + μ2

)i

= CN

μ1 + μ2

μ1 + μ2 − λR
.

Now assume nA > 0. We consider three cases:

1. There are no R jobs in the system. Then

Pr{NA = nA and no R jobs in system} = CN

(
λA

μ2

)nA

. (10)

2. There are both R and A jobs in the system, and there is an R at the head of the
queue. Let r0 + 1 be the number of R jobs before the first A, and ri be the number
of R jobs following the i th A, i > 0. Then
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Pr{NA = nA, R at head}

=
∞∑

r0=0

∞∑

r1=0

· · ·
∞∑

rnA=0

CN

(
λR

μ1 + μ2

)1+r0+···+rnA
(

λA

μ1 + μ2

)nA

= CN

(
λA

μ1 + μ2

)nA

⎛

⎝
∞∑

r0=0

(
λR

μ1 + μ2

)r0
⎞

⎠ · · ·
⎛

⎝
∞∑

rnA=0

(
λR

μ1 + μ2

)rnA

⎞

⎠
(

λR

μ1 + μ2

)

= CN

(
λA

μ1 + μ2

)nA

⎛

⎝ 1

1 − λR
μ1+μ2

⎞

⎠
nA+1 (

λR

μ1 + μ2

)

= CN

(
λA

μ1 + μ2

)nA
(

μ1 + μ2

μ1 + μ2 − λR

)nA+1 (
λR

μ1 + μ2

)

= CN

(
λR

μ1 + μ2 − λR

)(
λA

μ1 + μ2 − λR

)nA

. (11)

3. There are both R and A jobs in the system, and there is an A at the head of the
queue. Let � + 1 = a0 be the number of A jobs before the first R, let r1 + 1 be the
number of Rs following these initial As, and let ri be the number of Rs following
the (� + i)th A, i > 1. Then

Pr{NA = nA, A at head}

=
nA−1∑

�=0

∞∑

r1=0

· · ·
∞∑

rnA−�=0

CN

(
λA

μ2

)�+1

×
(

λR

μ1 + μ2

)1+r1+···+rnA−�
(

λA

μ1 + μ2

)nA−�−1

= CN

(
λR

μ2

) nA−1∑

�=0

(
λA

μ2

)� (
λA

μ1 + μ2

)nA−�
⎛

⎝
∞∑

r1=0

(
λR

μ1 + μ2

)r1
⎞

⎠

× · · ·
⎛

⎝
∞∑

rnA−�=0

(
λR

μ1 + μ2

)rnA−�

⎞

⎠

= CN

(
λR

μ2

) nA−1∑

�=0

(
λA

μ2

)� (
λA

μ1 + μ2

)nA−�
(

1

1 − λR
μ1+μ2

)nA−�

= CN

(
λR

μ2

) nA−1∑

�=0

(
λA

μ2

)� (
λA

μ1 + μ2 − λR

)nA−�

= CN

(
λR

μ2

) μ2

[(
λA
μ2

)nA −
(

λA
μ1+μ2−λR

)nA
]

μ1 − λR

= CN

(
λR

μ1 − λR

) [(
λA

μ2

)nA

−
(

λA

μ1 + μ2 − λR

)nA
]

. (12)
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Finally, we add (10), (11), and (12) to get the result in (5).
We now obtain the Laplace transform of the response time for class A jobs, T̃A(s),

via distributional Little’s Law [22]. First, we find the z-transform of the number of
class A jobs in the system, N̂A(z):

N̂A(z) =
∞∑

i=0

Pr{NA = i}zi

= ζN1

∞∑

i=0

(
λA

μ2

)i

zi + ζN2

∞∑

i=0

(
λA

μ1 + μ2 − λR

)i

zi

= ζN1μ2

μ2 − λAz
+ ζN2(μ1 + μ2 − λR)

μ1 + μ2 − λR − λAz
.

Observe that class A jobs depart the system in the same order inwhich they arrive, so
ATA , the number of class A arrivals during a class A response time, is equivalent to NA,
the number of class A jobs seen by an A departure. Then since ÂTA (z) = T̃A(λA−λAz),
we have

T̃A(λA − λAz) = N̂A(z)

= ζN1μ2

μ2 − λAz
+ ζN2(μ1 + μ2 − λR)

μ1 + μ2 − λR − λAz
.

Let s = λA − λAz, so z = 1 − s
λA

. Then we have

T̃A(s) = ζN1μ2

μ2 − λA(1 − s
λA

)
+ ζN2(μ1 + μ2 − λR)

μ1 + μ2 − λR − λA(1 − s
λA

)

= (1 + ωN)
νN1

νN1 + s
− ωN

νN2

νN2 + s
.

This is the transformof ageneralizedhyperexponential distribution,H2(νN1, νN2, ωN).
Finally,

E[TA] = −T̃ ′
A(s)|s=0

= −
[
(1 + ωN)

−νN1

(νN1 + s)2
+ ωN

νN2

(νN2 + s)2

] ∣∣∣∣
s=0

= 1

νN1
+ 1

νN2
− 1

νN3
.

��
Proof (Theorem 4) Definition 1 gives us E[TR]Opt−Split, E[TA]Opt−Split, and
E[T ]Opt−Split. We know E[TA]Redundant from Theorem 3. Theorem 2 tells us that

TRedundant
R ∼ Exp(μ1 + μ2 − λA − λR),
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(a) (b) (c)E[TR] E[TA] E[T ]

Fig. 6 Comparing redundancy (solid blue), Opt-Split (dashed green), and JSQ (dashed red) for the W

model as λR increases, for μ1 = μ2 = 1, λA = 0.6, and λB = 0.4. Lines shown include mean response
time for a class R, b class A, and c the system. Results for other values of μ1 and μ2 are similar (Color
figure online)

so we know that E[TR]Redundant = 1
μ1+μ2−λA−λR

. Finally,

E[T ]Redundant = λR

λA + λR
E[TR]Redundant + λA

λA + λR
E[TA]Redundant.

Thus, E[TR ]Redundant
E[TR ]Opt−Split ,

E[TA]Redundant
E[TA]Opt−Split , and

E[T ]Redundant
E[T ]Opt−Split , and the desired results follow after

some minor algebra. ��

5 The W model

We now consider the W model (see Fig. 2b). The W model has two non-redundant
classes, A and B, each with its own server. A third class, R, enters the system and
issues redundant requests at both servers. We study how this redundant class affects
the performance of the system.

An immediate consequence of Theorem 1 is Lemma 4, which gives the limiting
distribution of the W model.

Lemma 4 In theWmodel, the limiting probability of being in state (cn, cn−1, . . . , c1)
depends on c1, as follows:

π(cn ,...,A) = CW

(
λA

μ1

)a0 (
λA

μ1 + μ2

)a1 (
λB

μ1 + μ2

)b1 (
λR

μ1 + μ2

)r

π(cn ,...,B) = CW

(
λB

μ2

)b0 (
λA

μ1 + μ2

)a1 (
λB

μ1 + μ2

)b1 (
λR

μ1 + μ2

)r

π(cn ,...,R) = CW

(
λA

μ1 + μ2

)a1 (
λB

μ1 + μ2

)b1 (
λR

μ1 + μ2

)r

,

where a0 is the number of class A jobs before the first class B or R job, b0 is the
number of class B jobs before the first class A or R job, a1 (respectively, b1) is the
number of class A (class B) jobs after the first job of class R or B (A), r is the total
number of class R jobs, and
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CW =
(
1 − λA

μ1

) (
1 − λB

μ2

) (
1 − λR

μ1 + μ2 − λA − λB

)

is a normalizing constant.

Like in the Nmodel, the redundant class (class R) has an exponentially distributed
response time (Theorem 5). This is again surprising because the system is not an
M/M/1 queue. Nonetheless, the response time for the redundant class is stochastically
equivalent to the response time in an M/M/1 queue with arrival rate λR and service
rate μ′ = μ1 + μ2 − λA − λB . We can interpret μ′ as the remaining service capacity
in the system after λA and λB have been apportioned to classes A and B, respectively.
Alternatively, we can view the response time for the redundant class as that in an
M/M/1 queue with arrival rate λA + λB + λR and service rate μ1 + μ2.

Theorem 5 In the W model,

1. Thenumberof class R jobs in the system, NR, is distributedasGeometric(1−ρ)−1,
where ρ = λR

μ1+μ2−λA−λB
.

2. The response time of class R jobs, TR, is distributed as Exp(μ1 +μ2 −λA −λB −
λR).

Proof The proof follows the same approach as that of Theorem 10, and is omitted. ��
In Theorem 6, we derive the distribution of response time for the non-redundant

class A (class B is symmetric).

Theorem 6 In the W model,

1. The number of class A jobs in the system, NA, has p.m.f.

Pr{NA = nA} = ζW1

(
λA

μ1

)nA

+ ζW2

(
λA

μ1 + μ2 − λB − λR

)nA

,

where

ζW1 = (μ1 − λA)(μ2 − λB)(μ1 + μ2 − λA − λB − λR)

μ1(μ2 − λB − λR)(μ1 + μ2 − λA − λB)
,

ζW2 = −λR(μ1 − λA)(μ1 + μ2 − λA − λB − λR)

(μ2 − λB − λR)(μ1 + μ2 − λA − λB)
.

2. The distribution of response time of class A jobs is

TA ∼ H2(νW1, νW2, ωW),

where

νW1 = μ1 − λA,

νW2 = μ1 + μ2 − λA − λB − λR,

νW3 = μ1 + μ2 − λA − λB,
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ωW = (μ2 − λB)νW2

(μ2 − λB − λR)νW3
.

The mean response time of class A jobs is

E[TA] = 1

νW1︸︷︷︸
M/M/1

+ 1

νW2
− 1

νW3︸ ︷︷ ︸
penalty

, (13)

Proof The proof follows the same approach as that of Theorem 3, and is omitted. ��
Like in the N model, we find that TA follows a generalized hyperexponential dis-

tribution. The mean response time of class A (or class B) jobs can be interpreted as
that in an M/M/1 queue with arrival rate λA (respectively, λB) and service rate μ1
(respectively, μ2), plus a penalty term that captures the extent to which the redundant
class hurts the As (or Bs) (Eq. 13). Surprisingly, this penalty is the same for class A
and class B even if they have different loads: the pain caused by the redundant class is
shared equally among the non-redundant classes. The intuition behind this surprising
result comes from the fact that, like in the N model, the distribution of response time
for class A can be rewritten as the distribution of time in queue in an M/M/1 queue
with arrival rate λR and service rate μ1 + μ2 − λA − λB − λR , plus the response time
in an M/M/1 queue with arrival rate λA and service rate μ1 (class B is symmetric).
That is, both classes experience the queueing time in anM/M/1 queue with arrival rate
λR and service rate μ1 + μ2 − λA − λB − λR : the mean of this distribution is exactly
the penalty term incurred by both class A and class B.

The introduction of a new redundant class clearly hurts the existing non-redundant
classes, because the new redundant jobs compete for service with the non-redundant
jobs.We now askwhat would happen if class R chosewhich queue(s) to join according
to some alternative policy, for example, Opt-Split or JSQ.

In Fig. 6, we compare these options, where the mean response time under Opt-
Split is derived analytically (Definition 2), but JSQ is simulated. We find that for the
redundant class, redundancy outperforms JSQ, which in turn outperforms Opt-Split
(Fig. 6a).

For the non-redundant classes (Fig. 6b), mean response time is often lower under
redundancy than under Opt-Split or JSQ, particularly under higher loads of redundant
jobs. This is because, even though a larger number of R jobs compete with class A
at server 1, some of these R jobs depart the system without ever using server 1 (they
complete service at server 2 before entering service at server 1), and some of these R
jobs receive service on both servers at once, thus departing the system faster. As in
the N model, redundancy is always better for the overall system (Fig. 6c).

When the servers are homogeneous, in the few cases inwhichmean response time of
class A or B is lower under Opt-Split than under redundancy, we show that redundancy
is never more than 50 % worse for the A or B jobs.

Definition 2 Under Opt-Split, a fraction p of class R jobs go to server 1, and a fraction
1 − p go to server 2, where p is chosen to minimize E[T ]. The mean response times
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for class R jobs, class A jobs, and the overall system are:

E[TR]Opt−Split = p

μ1 − λA − pλR
+ 1 − p

μ2 − λB − (1 − p)λR
,

E[TA]Opt−Split = 1

μ1 − λA − pλR
,

E[T ]Opt−Split = λA

λA + λB + λR
E[TA]Opt−Split + λB

λA + λB + λR
E[TB]Opt−Split

+ λR

λA + λB + λR
E[TR]Opt−Split.

The mean response time for class B is symmetric to that of class A.

Theorem 7 If μ1 = μ2, then the following are true:

1. 1
2 ≤ E[TR ]Redundant

E[TR ]Opt−Split ≤ 1. If λR ≥ |λA − λB |, then E[TR ]Redundant
E[TR ]Opt−Split = 1

2 .

2. 1
2 ≤ E[TA]Redundant

E[TA]Opt−Split ≤ 3
2 . The same inequality holds for class B.

3. 1
2 ≤ E[T ]Redundant

E[T ]Opt−Split ≤ 1.

Proof We have E[TR]Opt−Split, E[TA]Opt−Split, and E[T ]Opt−Split from Definition 2.
We also know E[TA]Redundant from Theorem 6. Theorem 5 tells us that

TRedundant
R ∼ Exp(μ1 + μ2 − λA − λB − λR),

so

E[TR]Redundant = 1

μ1 + μ2 − λA − λB − λR
.

Finally,

E[T ]Redundant = λR

λA + λB + λR
E[TR]Redundant + λA

λA + λB + λR
E[TA]Redundant

+ λB

λA + λB + λR
E[TB]Redundant.

We use these expressions to find E[TR ]Redundant
E[TR ]Opt−Split ,

E[TA]Redundant
E[TA]Opt−Split , and

E[T ]Redundant
E[T ]Opt−Split , and the

desired results follow after some minor algebra. ��

6 The M model

Finally, we consider theMmodel (Fig. 2c). Unlike theN andWmodels, there are two
redundant classes in anMmodel, classes R1 and R2.We study how to best use a shared
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server to which both classes issue redundant requests. For convenience, throughout
the remainder of this section we use the notation

μ1,2,3 = μ1 + μ2 + μ3,

μ1,2 = μ1 + μ2,

μ2,3 = μ2 + μ3.

An immediate consequence of Theorem 1 is Lemma 5, which gives the limiting
distribution of the M model.

Lemma 5 In theMmodel, the limiting probability of being in state (cn, cn−1, . . . , c1)
depends on c1, as follows:

π(cn ,...,R1) = CM

(
λR1

μ1,2

)r1,0 (
λR1

μ1,2,3

)r1,1 (
λR2

μ1,2,3

)r2,1
,

π(cn ,...,R2) = CM

(
λR2

μ2,3

)r2,0 (
λR1

μ1,2,3

)r1,1 (
λR2

μ1,2,3

)r2,1
,

where r1,0 (respectively, r2,0) is the number of class R1 (R2) jobs before the first class
R2 (R1) job, r1,1 (respectively, r2,1) is the number of class R1 (R2) jobs after the first
R2 (R1) job, and

CM = (μ1,2 − λR1)(μ1,2,3 − λR1 − λR2)(μ2,3 − λR2)

μ1,2μ2,3(μ1,2,3 − λR1 − λR2) + λR1λR2μ2

is a normalizing constant.

In Theorem 8 we derive the distribution of response time for class R1 (class R2 is
symmetric). The response time for class R1 follows a generalized hyperexponential
distribution.

Note that in the N and W models, the redundant class had an exponentially dis-
tributed response time and the response time distribution for non-redundant classes
was a generalized hyperexponential, whereas in the M model, the redundant class
has a generalized hyperexponential response time distribution. We hypothesize that
the response time distribution is related to the degree of redundancy: fully redun-
dant classes see exponentially distributed response time, and partially redundant or
non-redundant classes see generalized hyperexponentially distributed response times.

Theorem 8 In the M model,

1. The number of class R1 jobs, NR1 has p.m.f.

Pr{NR1 = n} = ζM1

(
λR1

μ1,2

)n

+ ζM2

(
λR1

μ1,2,3 − λR2

)n

,
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where

ζM1 = CM

μ3

μ3 − λR2

,

ζM2 = CM

(
λR2

μ2,3 − λR2

− λR1

μ1,2,3 − λR2

)
.

2. The distribution of response time of class R1 jobs is

TR1 ∼ H2(νM1, νM2, ωM),

where

νM1 = μ1,2 − λR1,

νM2 = μ1,2,3 − λR1 − λR2 ,

ωM = ζM1
μ1,2

μ1,2 − λR1

.

Proof The proof follows the same approach as that of Theorem 3, and is omitted. ��
Both classes obviously benefit from issuing redundant requests on a shared server

rather than each class having a single dedicated server. However, one might wonder
whether mean response time could be further reduced using some other policy, like
Opt-Split or JSQ, instead of redundancy. In Fig. 7 we investigate the relative perfor-
mance of these alternative policies. Mean response time under Opt-Split is derived
analytically (Definition 3); JSQ is simulated.

Definition 3 Under Opt-Split, a fraction p of class R1 jobs go to server 2, and a
fraction 1 − p go to server 1; and a fraction q of class R2 jobs go to server 2, and
a fraction 1 − q go to server 3. We choose p and q to minimize the overall mean
response time, given by

E[T ]Opt−Split = (1 − p)λR1

λR1 + λR2

· 1

μ1 − (1 − p)λR1

+ pλR1 + qλR2

λR1 + λR2

· 1

μ2 − pλR1 − qλR2

+ (1 − q)λR2

λR1 + λR2

· 1

μ3 − (1 − q)λR2

.

In all cases, redundancy outperforms both Opt-Split and JSQ. For homogeneous
servers (Fig. 7a), mean response time under JSQ approaches that under redundancy
at high load, but at low load redundancy is better by a factor of 2. For heterogeneous
servers (Fig. 7b), as the service rate of the shared server increases, mean response time
under Opt-Split approaches that under redundancy (Theorem 9), but JSQ is worse by
a factor of 2. As the system is symmetric, the response times of the individual classes
are the same as that of the overall system, and thus are not shown.

We analytically prove performance bounds for the M model:
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(a) (b)μ1 = μ2 = μ3 1= μ1 = μ3 = 1, λR1 = λR2 = 0.6.

Fig. 7 Comparing redundancy, Opt-Split, and JSQ for the M model. Lines shown include mean response
time for the overall system under redundancy (solid blue), Opt-Split (dashed green), and JSQwith tiebreak-
ing in favor of the faster server (dashed red). Mean response time as a function of a increasing λR1 = λR2 ,
b increasing μ2 (Color figure online)

Theorem 9 In theM model, for any μ1, μ2, μ3, λR1 , and λR2 such that the system is
stable,

1. If μ1 = μ2 = μ3 and λR1 = λR2 ,
1
3 ≤ E[T ]Redundant

E[T ]Opt−Split ≤ 1
2 .

2. For finite μ1 and μ3, limμ2→∞ E[T ]Redundant
E[T ]Opt−Split = 1.

3. If μ1 = μ3,
E[T ]Redundant
E[T ]Opt−Split ≤ 1.

Proof We know E[T ]Opt−Split from Definition 3, and

E[T ]Redundant = λR1

λR1 + λR2

E[TR1]Redundant +
λR2

λR1 + λR2

E[TR2 ]Redundant,

where we know E[TR1]Redundant and E[TR2 ]Redundant from Theorem 8. We can then

write E[T ]Redundant
E[T ]Opt−Split , and the desired results follow after some minor algebra. ��

7 Scale

Thus far, we only have considered systems with two servers (the N and W models)
and three servers (the M model). We now turn our attention to the question of scale.

The scaled N, W, and M models are shown in Fig. 8. In the scaled N model there
are k servers and k classes of jobs (see Fig. 8a). Class R jobs replicate at all servers,
while jobs from class Ci join only the queue at server i for 2 ≤ i ≤ k. The scaled W

model is similar; there are k servers and k + 1 classes of jobs, with class R replicating
at all servers, and classCi going only to server i , 1 ≤ i ≤ k (see Fig. 8b). In the scaled
M model each class Ri , 1 ≤ i ≤ k, joins the queue at its own dedicated server and at
a single server shared by all classes (see Fig. 8c).

The limiting probabilities derived in Theorem 1 for the general redundancy system
apply to the scaled N, W, and M models. In Theorem 10 we use this result to find
that in both the scaled N and W models, response time for class R is exponentially
distributed, extending the results of Theorems 2 and 5, respectively.
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Fig. 8 Scaled versions of a the N model, b theW model, and c the M model

(a) (b) (c)Scaled N Scaled W Scaled M

Fig. 9 Comparing E[TR ] under redundancy (solid blue), Opt-Split (dashed green), and JSQ (dashed red)
in scaled systems with homogeneous servers, all with rate 1. a The scaled N model with λCi = 0.6 for all
non-redundant classes, and λR = 1.2. b The scaledWmodel with λCi = 0.6 for all non-redundant classes,
and λR = 0.7. c The scaled M model with λRi = 0.6 for all classes (Color figure online)

Theorem 10

1. In the scaled N model, the distribution of the number of class R jobs in the system
is
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NR ∼ Geometric

(
1 − λR∑k

i=1 μi − ∑k
i=2 λi

)
− 1,

and the distribution of the response time of class R jobs is

TR ∼ Exp

(
k∑

i=1

μi −
k∑

i=2

λi − λR

)
.

2. In the scaledWmodel, the distribution of the number of class R jobs in the system
is

NR ∼ Geometric

(
1 − λR∑k

i=1 μi − ∑k
i=1 λi

)
− 1,

and the distribution of the response time of class R jobs is

TR ∼ Exp

(
k∑

i=1

μi −
k∑

i=1

λi − λR

)
.

Proof Deferred to the end of the section. ��
For the M model and for the non-redundant classes in the N and W models, the

result from Theorem 1 does not easily yield a closed-form expression in the scaled
models. The results discussed in the remainder of this section for these classes are
obtained via simulation.

For the two-server N and W models, we saw that the redundant class had lower
mean response time under redundancy than under both JSQ and Opt-Split, but often
JSQ was very close to redundancy. Here, for scaled models, we investigate whether
redundancy enjoys a greater advantage over JSQandOpt-Split as the number of servers
increases.

Indeed, we find that the redundant class sees a much greater benefit under redun-
dancy than under Opt-Split and JSQ as k increases for the scaled N and W models
(see Fig. 9a, b). In fact, as k increases, the benefit grows unboundedly because when
a class R job enters a system with high k, it tends to see many idle servers. Under
Opt-Split, this job may not be routed to one of the idle servers. Under JSQ, the job
goes to a single idle server i and receives mean response time 1

μi
. Under redundancy,

the job gets to use all of the idle servers, thereby receiving mean response time 1∑
i μi

.

In the two-server N and W models, we saw that the benefit that class R received
from redundancy came at a cost to the non-redundant class A. In the scaled N and
W models, this cost approaches 0 because the pain caused by the redundant class is
spread among all non-redundant classes, so the effect on any one of these classes is
minimal; the response time for each non-redundant class Ci approaches that of an
M/M/1 queue with arrival rate λCi and service rate μi .
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In the three-server version of theMmodel (Sect. 6), we saw that redundancy signifi-
cantly outperformedOpt-Split and JSQ. In Fig. 9c, we look at the relative performance
of the three policies as k increases. In the scaledMmodel, at low k, redundancy indeed
gives a lower mean response time than Opt-Split and JSQ. However, as k increases,
response time becomes the same under all three policies. As the load on the shared
server becomes high, no class benefits from this server; each class experiences an inde-
pendent M/M/1. Convergence to k independent M/M/1 queues is slow; for example, at
k = 200, redundancy still provides a 5 % lower mean response time than independent
M/M/1 queues.

7.1 Proof of Theorem 10

Proof (Theorem 10) To find Pr{NR = nR} in theNmodel, we will consider the non-R
jobs in the queue as being split into two pieces: the non-R jobs before the first R in
the queue, and the non-R jobs after the first R in the queue. We sum over all possible
lengths of these two pieces, and all possible classes of these non-R jobs. Let x0 be
the number of non-R jobs before the first R in the queue, and let x1 be the number of
non-R jobs after the first R in the queue. Then we have

Pr{NR = nR} =
∞∑

x0=0

∞∑

x1=0

Cη
nR
R X0

(
x1 + nR − 1

x1

) ∏

j≥x0
c j �=R

X1

= Cη
nR
R

⎛

⎝
∞∑

x0=0

X0

⎞

⎠

⎛

⎝
∞∑

x1=0

Xx1
1

(
x1 + nR − 1

x1

)⎞

⎠ ,

where

ηR = λR∑k
m=1 μm

,

X0 =
x0∏

j=1

∑
ci �=R λci∑

m∈ ⋃
t≤ j

St μm
,

X1 =
∑

ci �=R λci
∑k

m=1 μm
.

The sums in the numerators of X0 and X1 take into account all of the possible
combinations of classes making up the x0 and x1 jobs, respectively.

Now let C1 = ∑∞
x0=0 X0 (note that this is a constant with respect to nR). Using the

identity
∑∞

i=0 p
i
(i+n−1

i

) =
(

1
1−p

)n
for |p| < 1, we have
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Pr{NR = nR} = CC1η
nR
R

⎛

⎜⎝
1

1 −
∑

ci �=R λci∑
m μm

⎞

⎟⎠

nR

= CC1

(
λR∑

m μm − ∑
ci �=R λci

)nR

.

Using the normalization equation

∞∑

nR=0

Pr{NR = nR} = 1,

we find

CC1 = 1 − λR∑
m μm − ∑

ci �=R λci
.

Hence NR ∼ Geometric

(
1 − λR∑

m μm−∑
ci �=R λci

)
− 1.

Next, we obtain the Laplace transform of the response time for class R jobs, T̃R(s),
via distributional Little’s Law. First, we consider the z-transform of the number of
class-R Poisson arrivals during T , ÂTR (z) = T̃R(λR − λRz). Class R jobs depart the
system in the same order in which they arrive, so ATR is equivalent to NR , the number
of jobs seen by an R departure. Hence

T̃R(λR − λRz) = N̂R(z).

We know that NR is distributed as Geometric (p) − 1, where p =
1 − λR∑

m μm−∑
ci �=R λci

. Hence we have

T̃R(λR − λRz) = N̂R(z) = p

1 − z(1 − p)
.

Let s = λR − λRz, so that z = 1 − s/λR . Then we have

T̃R(s) = p

1 −
(
1 − s

λR

)
(1 − p)

,

which after some simplification gives

T̃R(s) =
∑

m μm − ∑
ci �=R λci − λR∑

m μm − ∑
ci �=R λci − λR + s

.

Hence TR ∼ Exp
(∑

m μm − ∑
ci �=R λci − λR

)
.

The derivation for the W model is very similar, and is omitted here. ��
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8 Relaxing assumptions

Thus far, we have assumed that service times are exponentially distributed and that
when a job runs on multiple servers its service times are independent on the different
servers. The independence assumption is appropriate in situations in which server-
dependent factors such as network congestion, background load, and disk seek times
dominate a job’s actual computation time. For example, suppose that each server is
actually a virtual machine (VM) running in the cloud, serving web queries. A VM
running on one physical machine is completely independent from a VM running on a
different physical machine.While a VM running on one physical machinemight expe-
rience slowdown factors of up to 27 due to other traffic on its physical machine [38],
this does not affect a VM running on a different physical machine, which may expe-
rience a slowdown factor of 1. In such cases, a job’s running time depends primarily
on the physical machine on which it runs, rather than on the job itself.

It is less clear that service times should be exponentially distributed. If the dom-
inating component of service time is a disk seek time, for example, then the service
times will have low variability. On the other hand, factors such as network congestion
can lead to highly variable service times. In this section we consider the impact of
redundancy when service times are more or less variable than the exponential. Unfor-
tunately our exact analysis does not apply to non-exponential service times, hence we
study this question via simulation.

The effect of service time variability on mean response time is very complicated.
Recall that redundancy helps for two reasons: by allowing jobs to experience the min-
imum queueing time across servers, and by allowing jobs to experience the minimum
service time across servers. Changing the service time variability reveals a tradeoff
between these two factors. When service time variability is high, the redundant jobs
experience a bigger service time benefit (which likewise helps the non-redundant jobs),
but queueing times increase because a large non-redundant job can block a server for
a long period of time.When service time variability is lower, queueing times are much
lower, but redundant jobs experience less of a service time benefit and can even waste
server capacity.

Figure 10 shows mean response time in the N model for the redundant jobs,
non-redundant jobs, and overall system as λR increases. For the non-redundant jobs

(a) (b) (c)Class R Class A Overall

Fig. 10 Mean response time in the N model for a redundant jobs, b non-redundant jobs, and c the overall
system as a function of λR when λA = 0.6 and mean service time is 1. Lines shown include exponential
service times (solid red line), hyperexponential service times with C2 = 10 (dotted blue line), and Erlang
service times with C2 = 0.1 (dashed green line) (Color figure online)
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(Fig. 10b), at low load the queueing time effect is most pronounced: higher variability
service times lead to higher mean response times. This is because non-redundant jobs
can experience very long queueing times due to waiting behind other non-redundant
jobs with long running times; the benefit of clearing the redundant jobs out of the
system more quickly is insufficient to overcome this effect. For the redundant jobs
(Fig. 10a), at most values of λR mean response time is lowest under exponentially dis-
tributed service times. This is because the exponential service times provide the right
balance between reducing queueing time (for which we want low service time vari-
ability) and reducing service time (for which we want high service time variability). It
is only at very high load that the service time benefit of high variability service times
starts to dominate; when load becomes very high this benefit is enough to increase the
system’s stability region, benefiting both the redundant and non-redundant jobs.

9 Conclusion

In this paper we study amulti-server systemwith redundant requests. In such a system,
each job that arrives joins the queue at some subset of the servers and departs the
system as soon as it completes service at one of these servers. While recent empirical
work in computer systems has demonstrated that redundant requests can greatly reduce
response time, theoretical analysis of systemswith redundancyhas proved challenging.

We present the first exact analysis of systems with redundancy, deriving the limit-
ing distribution of the queue state. Our state space is very complex and furthermore
yields a non-product form, and non-obvious, limiting distribution. Nonetheless, we
find very clean, simple results for response time distributions for both redundant and
non-redundant classes in small systems For large systems we derive the response time
distribution of a fully redundant class. Many of our results are counterintuitive:

1. The redundant class experiences a response time distribution identical to that in an
M/M/1 queue, even though the system is not an M/M/1 queue (N andWmodels).

2. Once a class is fully redundant, it is immune to additional classes becoming redun-
dant: the distribution of its response time does not change (N and W model).

3. The non-redundant class often prefers the other class to be redundant as opposed
to routing the other class according to Opt-Split or JSQ (N and W models).

4. Given two classes of jobs, A and B, eachwith its own queue, if class R is redundant
at both queues, the pain caused to class A is equal to that caused to class B, even
though A’s and B’s respective arrival rates and service rates may be different (W
model).

5. When multiple classes share a single server, redundancy can improve mean
response time relative to Opt-Split and JSQ by a factor of 2 (M model).

6. As the number of servers increases, redundancy gives an even greater benefit to
the redundant class while causing less pain to the non-redundant classes (scaled
N and scaled W models).

7. When service times are highly variable, redundancy yields an even bigger improve-
ment, even increasing the system’s stability region.

The redundancy system is closely related to many other queueing models for which
exact analysis has long been elusive: coupled processor systems, fork–join systems,
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and systems with flexible servers all bear a resemblance to redundancy systems in
that they all involve jobs that can be processed by multiple servers. The specific
mechanism that determines which jobs run on which servers, and whether jobs can
run simultaneously onmultiple servers, varies betweenmodels, but all of these models
share the underlying theme of flexibility. We hope that the new analysis presented in
this paper will provide insights on how to analyze these other difficult systems.
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