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Abstract

Redundancy is an increasingly popular technique for reducing response times in computer systems, and there
is a growing body of theoretical work seeking to analyze performance in systems with redundancy. The idea
is to dispatch a job to multiple servers at the same time and wait for the first copy to complete service.
Redundancy can help reduce response time because redundant jobs get to experience the shortest of multiple
queueing times and potentially of multiple service times—but it can hurt jobs that are not redundant and
must wait behind the redundant jobs’ extra copies. Thus in designing redundancy systems it is critical to
find ways to leverage the potential benefits without incurring the potential costs.

Scheduling represents one tool for maximizing the benefits of redundancy. In this paper we study
three scheduling policies: First-Come First-Served (FCFS), Least Redundant First (LRF, under which less-
redundant jobs have priority over more-redundant jobs), and Primaries First (PF, under which each job
designates a “primary” copy, and all other copies have lowest priority). Our goal for each of these policies
is to understand the marginal impact of redundancy: how much redundancy is needed to get the biggest
benefit? We study this question analytically for LRF and FCFS, and via simulation for all three policies.
One of our primary contributions is a surprisingly intricate proof that mean response time is convex as well as
decreasing as the proportion of jobs that are redundant increases under LRF for exponential services. While
response time under PF is also decreasing and appears to be convex as well, we find that, surprisingly, FCFS
may be neither decreasing nor convex, depending on the parameter values. Thus, the scheduling policy is
key in determining both whether redundancy helps and the marginal effects of adding more redundancy to
the system.

Keywords: Redundancy, replication, scheduling, Least Redundant First, Primaries First

1. Introduction

A powerful tool for addressing the inherent variability and unreliability in cloud computing, mobile grids,
volunteer desktop grids, and large-scale data access systems is redundancy, or the replication of jobs to
multiple servers. The idea is to dispatch the job to several servers, where the job is considered complete
as soon as any one of its copies completes; at this time all other copies are canceled immediately. This
redundancy protocol is sometimes called “cancel-on-completion” in contrast to “cancel-on-start,” where all
copies are cancelled as soon as any copy starts service. Redundancy (also known as speculation, replication,
or cloning) has led to significant improvements in response times and reliability in practice [7, 8, 15, 27].
However, it can be expensive to replicate data on multiple servers and to coordinate a large number of job
replications, so it is generally not reasonable to copy all jobs on all servers. In this work, we study the
marginal return of redundancy: can most of the benefit of redundancy be obtained with only a small amount
of redundancy?

We model our system as a multi-server queueing model with general arrivals and exponential, server-
dependent, service times. We assume some initial configuration of classes of jobs, where a class i is defined
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by the set of servers Si that can serve (copies of) jobs of that class. We assume the job classes follow a
nested structure. That is, if two job classes i and j have at least one server in common (Si ∩ Sj 6= ∅), then
one class is a subset of the other (Si ⊂ Sj or Sj ⊂ Si). When a class-i job arrives to the system, a copy of
the job is sent to all the servers in Si; the first copy to complete completes the service of the job, and all
other copies are removed without penalty.

This paper is a companion to our paper [16], in which we studied scheduling policies and fairness in
nested systems with redundancy. We considered three scheduling policies: First Come First Served (FCFS),
Least Redundant First (LRF), and Primaries First (PF). In LRF scheduling, jobs with smaller degrees
of redundancy are given preemptive priority over more-redundant jobs at each server. We showed in [16]
that LRF scheduling stochastically maximizes the departure process, and therefore minimizes overall mean
response time, assuming Poisson arrivals and exponential service times. Unfortunately, redundancy is not
always fair: under both LRF and FCFS—for which we derived exact, closed-form expressions for per-class
and overall mean response time—mean response times for some classes can increase under FCFS and LRF
scheduling relative to a system in which no jobs are redundant. We designed PF scheduling with fairness
in mind; in particular, under PF no class of jobs is worse off when redundancy is introduced to the system.
Under PF, each job designates one copy as its “primary,” and all other copies (if any) are designated
“secondaries.” At each server, primaries are given full preemptive priority over secondaries; within the
primaries (respectively, secondaries), jobs are scheduled in FCFS order. We showed in [16] that, under PF,
the response time for each class is stochastically improved when some jobs shift from being non-redundant
to redundant.

In this paper we consider the marginal returns to redundancy for all three of these scheduling policies.
We explore the effect of shifting some jobs from a given class to a more redundant class. Under LRF, we
show such a shift reduces the overall mean response time, but the improvement decreases as more jobs shift
from the less redundant class to the more redundant class. That is, there is a decreasing marginal benefit
for redundancy, indicating that the most significant response time improvements can be achieved with only
a small amount of redundancy. While the result may seem unsurprising, the proof is surprisingly involved.
We show via a coupling argument that increasing redundancy causes the sequence of departures to be earlier
in the stochastic, sample-path sense. In the course of this proof, we derive an explicit stochastic expression
for the overall decrease in response time, ∆, obtained when a single job is changed from nonredundant to
redundant. We then use this expression to analyze the effect of a second switched job on ∆, yielding insight
into second order effects. While our proof approach does not translate easily to PF scheduling, we observe
empirically that the system behavior under PF is similar to that under LRF.

Surprisingly, under FCFS the same result does not hold: not only is there not necessarily a decreasing
marginal benefit for increased redundancy, but increased redundancy does not necessarily reduce response
time. This result, which is very counterintuitive when service times are i.i.d. and exponentially distributed,
flies in the face of earlier results that suggest that more redundancy is always better [18, 17, 25]. We find
that instead, the potential benefits of redundancy depend on the scheduling policy, and not only on the
amount of redundancy.

We also study cross-derivative effects, that is, how the improvement of shifting jobs from class i to class
j, where Si ⊂ Sj , depends on the proportion of jobs that have shifted from some other class y to j, where
Sy ⊂ Sj . Here we find that the improvement is increasing with more redundancy in other classes under all
three policies. That is, there is an increasing marginal benefit for redundancy across different classes. This
result is surprising in combination with the fact that there is not always an increasing marginal benefit for
redundancy within the same class. And it has important implications for how best to configure redundancy
systems when there is an opportunity to choose where to increase redundancy: mean response time is lower
in a symmetric system than in an imbalanced system with the same fraction of redundant jobs.

The remainder of this paper is organized as follows. In Section 2 we review related work on redundancy
systems and on other types of systems with flexibility. In Section 3 we define our system model. Sec-
tion 4 presents our results on LRF scheduling, including both theoretical analysis and numerical examples
illustrating our results. In Section 5 we study FCFS and PF scheduling, and in Section 6 we conclude.
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2. Related Work

Redundancy has become an increasingly important area of study in recent years. Under the cancel-on-
completion model considered in this paper, Koole and Righter [25] showed that under certain circumstances,
the more redundancy the better; i.e., response time will be smallest if there is a single class of jobs that are
replicated to all servers. This is consistent with Gardner et al.’s [17] closed-form results for mean response
times in the symmetric Redundancy-d system, in which each job replicates to d randomly chosen servers.
Our work differs from the above in that we assume that each job has a fixed class that indicates the set
of servers to which it replicates. In the class-based setting, Gardner et al. [18] developed a closed form for
the steady-state distribution on queue states, and Gardner et al. [16] found the steady-state response-time
distributions for each class in nested redundancy systems, both under the assumption of Poisson arrivals and
exponential service times.

Much of the existing work on redundancy systems assumes FCFS scheduling, and the question of how
to schedule jobs in redundancy systems has begun to be addressed only recently. Sun et al. [30] investigate
optimal scheduling policies in systems in which each job consists of multiple tasks, all of which must be
completed. The tasks are allowed to be replicated at any server, unlike our class-based setting, and because
they consider multi-task jobs much of the scheduling decision focuses on which of a job’s tasks to schedule;
hence their work does not apply to our setting. In the class-based setting, Bonald and Comte [12, 13] proposed
and analyzed a balanced fairness scheduling policy under which response times are insensitive to the service
time distribution. This notion of fairness is different from the type of fairness Gardner et al. [16] studied, in
which the goal is for no class of jobs to be hurt by redundancy. Nageswaran and Scheller-Wolf [26] considered
a similar concept of fairness, but their focus was on achieving fairness through dispatching (assuming FCFS
scheduling), rather than on modifying the scheduling policy. See also [17, 19, 29, 31] for related analytical
work for systems with redundancy and more general forms of data coding.

Note that, given exponential service times, our cancel-on-completion redundancy model is equivalent to
a single-queue model in which more than one compatible server can work on a job at the same time. This is
also known as “server collaboration” in the operations management literature. Similarly, the cancel-on-start
redundancy model is equivalent to a single-queue system in which servers cannot collaborate, and to a system
in which jobs are dispatched to servers immediately according to the join-the-shortest-work policy [9, 10].
The effects of server collaboration and of various scheduling policies in systems with server collaboration have
been studied, for example, by Van Oyen, Gel, and Hopp [35] and Ahn and Righter [3]. Adan and Weiss [1]
found the steady-state distribution on the queue and server states under FCFS for the noncollaborative
version of our model (assuming exponential service times), and Adan et. al. [2] and Ayesta et al. [10]
studied the relationship between the steady-state distributions for the collaborative and noncollaborative
cases. The LRF policy, which minimizes overall response time in our collaborative (cancel-on-completion)
model, has been shown to minimize response time in the noncollaborative case as well by Akgun et al. [5]
(in this case, the policy is called Dedicated Customers First, DCF). Akgun et al. also argued, again for the
noncollaborative case, that FCFS from a single queue results in only a small loss in overall response time
relative to DCF, but is more fair across classes. In addition they showed that join-the-shortest-work routing
is the most efficient routing policy, and that this corresponds to FCFS from a single queue.

Because increasing the set of servers that a job is replicated to adds flexibility to the system, our work
fits into a broad stream of research showing diminishing marginal returns to flexibility. This has generally
been examined in the (non-redundant) queueing context in terms of increasing the flexibility of servers, for
example, through workforce cross training [6, 11, 22, 23, 32, 33]. The marginal effect of increasing customer
flexibility has been studied for variants of join the shortest queue or join the shortest work. For example,
Mitzenmacher [28] and Turner [34] have shown that “power of two” routing, i.e., choosing the shortest of two
randomly selected queues for each job (or a subset of the jobs) is almost as good as routing to the shortest
of all queues. See also Ayesta et al. [9] for an analysis of “power of d” or “redundancy-d” routing for the
cancel-on-start (noncollaborative) case under FCFS. In work most closely related to ours, Akgun et al. [4]
showed, for a symmetric two-server three-job-class system, that response times are decreasing and convex
in the proportion of flexible jobs that can join the shortest queue; the coupling arguments that we use to
reason about LRF in this paper follow a similar form to those presented by Akgun et al. He and Down [21]
showed an asymptotic version of the same result. Diminishing marginal returns to flexibility for production
networks and supply chain networks has been shown, for example, in [14, 20, 24].
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3. Model

We consider a system with k servers and ` classes of jobs. Jobs arrive to the system with average rate
λ; in some cases we assume that arrivals form a Poisson process. Each job is a class-i job, 1 ≤ i ≤ `,
independently with probability pi, so class-i jobs arrive with average rate λi = λpi. Each class of jobs i is
associated with a particular subset of the servers, Si = {s|server s can serve class-i jobs}. Upon arrival, a
class-i job replicates itself by joining the queues at all servers in Si.

A job’s service time on server s is exponentially distributed with rate µs for all job classes. Service times
are assumed to be independent across jobs and for the same job across multiple servers. A job is allowed
to be in service at multiple servers simultaneously, in which case it is considered to be complete as soon
as its first copy completes service. That is, if a job is in service on both servers s and r, its remaining
time is distributed as min{Exp (µs) ,Exp (µr)} = Exp (µs + µr). When a job’s first copy completes service,
all remaining copies are cancelled immediately regardless of whether they are in the queue or in service at
the other servers. Because the service times are exponential, this is equivalent to what is sometimes called
“server collaboration” in the operations management literature, where servers can work together on a job
with combined service rate equal to the sum of the servers’ individual rates.

We consider a specific system structure called a nested system. In a nested system, for all classes of jobs
i and j such that i 6= j, either (1) Si ⊂ Sj , (2) Sj ⊂ Si, or (3) Si ∩Sj = ∅. Let Ii be the subsystem in which
class-i is fully redundant. That is, the job classes in subsystem Ii are all classes j such that Sj ⊆ Si, and
the servers in subsystem Ii are the servers in Si. Let µIi and λIi denote the total service rate and total
arrival rate respectively in subsystem Ii. For stability, we assume that λIi < µIi for all classes i.

In much of this paper, for clarity we focus on a particular example of a nested system called the W
model (see Figure 1). In the W model, there are two servers and three classes of jobs. Class-A jobs are
non-redundant and join the queue at server 1 only. Class-B jobs are also non-redundant and join the queue
at server 2 only. Class-R jobs are redundant and join the queues at both servers. We let pA, pB , and pR
denote the fraction of jobs that are class-A, class-B, and class-R respectively, where pA + pB + pR = 1.

At this point the model is fully defined apart from the scheduling discipline. In the sections that follow,
we consider three different policies: Least Redundant First (Section 4), First Come First Served (Section 5.1),
and Primaries First (Section 5.2).

4. Convexity Under LRF

In this section we look at the effect of increasing the proportion of jobs that are redundant under
LRF scheduling. We first show that as the proportion of redundant jobs increases, the departure process
stochastically increases, so overall mean response time decreases (Lemma 1). We then show that the overall
mean response time is convex in the proportion of redundant jobs (Theorem 1). That is, as more and more
jobs become redundant, there is diminishing marginal benefit from an additional job becoming redundant.

Figure 1: The W model. Class-A jobs arrive at rate λA = λpA and join the queue at server 1 only, class-B jobs arrive at rate
λB = λpB and join the queue at server 2 only, and class-R jobs arrive at rate λR = λpR and join the queues at both servers 1
and 2.
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This is important because it tells us that a little redundancy goes a long way: we see the biggest response time
gains from having just a small number of redundant jobs. In systems where there is a cost to redundancy,
for example because redundant jobs’ data must be replicated on multiple servers, this allows us to achieve
the benefits of redundancy while not incurring high costs. This is analogous to results in systems without
redundancy showing that a little flexibility goes a long way in reducing response time (see, e.g., [4, 28, 32],
and see Section 2 for a more detailed discussion).

We begin by considering the specific case of the W model (see Section 3). In Section 4.3 we discuss how
our arguments for the W model can be extended to general nested systems.

We prove convexity of mean response time as a function of pR using a coupling argument. We first consider
a fixed sample path, with a given pR, and consider the effect of changing a single job from class-A (non-
redundant) to class-R (redundant); this creates two coupled sample paths. In Lemma 1 we develop an explicit
expression that captures the marginal benefit of switching one job from class-A to class-R. Corollaries 1
and 2 extend this result to allow any fraction of jobs to shift from class-A to class-R. We then consider the
effect of changing additional jobs from class-A to class-R on the original marginal benefit (Theorem 1). This
captures the second-order effect of increasing redundancy, and we show that the marginal benefit of class-A
jobs becoming redundant decreases as more class-A jobs become redundant. We also consider the effect of
changing a class-B job to a class-R job on the original marginal benefit of class-A jobs becoming redundant,
and show that the marginal benefit of changing a class-A job to be redundant increases as more class-B jobs
are redundant (Theorem 2).

4.1. First-Order Effects

We assume that the arrival processes and service rates are such that the first busy period ends (all servers
become idle) at some finite random time. For Lemma 1 and Corollaries 1 and 2, we do not need any other
conditions on the arrival process, except that it must be independent of the state of the system and of the
scheduling policy. As stated in Section 3, we also require λIi < µIi for all classes i so that the system is
stable.

We fix a sample path consisting of a given initial set of jobs, a given sequence of arrival times of jobs
of each class (i.e., a sample path of three split Poisson processes with rates λi, i = A,B,R), and a given
sequence of potential job completion times on each server (i.e., a sample path of two split Poisson processes
with rates µ1 and µ2). We will couple two systems on this sample path; the difference between the two
systems is that we shift some number of jobs from being class-A jobs in the first system to being class-R
jobs in the second system. We call the shifted jobs “ε” jobs and denote the two systems Syst(εA), in which
all of the ε jobs are class-A, and Syst(εR), in which all of the ε jobs are class-R. Because the LRF policy is
nonidling (i.e., work-conserving), any differences in actual completion times between Syst(εA) and Syst(εR)
must occur when a server idles in one system while in the other system it is busy.

Let N εi(t) be the number of jobs in the εi system, i = A,R We begin in Lemma 1 by assuming that
there is a single ε job. Without loss of generality, define the arrival time of the ε job as time 0. Let ∆ be the
difference in the overall total response time between Syst(εA) and Syst(εR). We summarize this and other
notation used in this section in Table 1. As part of our proof of Lemma 1 we derive an explicit expression
for ∆, given in Equation (1), that will be needed later to prove convexity in Theorem 1.

Lemma 1. On any sample path, if a single job is changed from class-A to class-R then ∆ ≥ 0; indeed
{N(t)εA}τt=0 ≥ {N εR(t)}τt=0 for all times τ .

Proof. We will derive an expression for ∆, the difference in overall response time in Syst(εA) and Syst(εR).
Differences in response time in the two systems could be experienced by jobs of any class, making the
accounting challenging. However, we note that because service times are i.i.d. exponential and depend only
on the server, the scheduling policy within a class has no effect on the mean response time for that class.
Hence our first step is to modify our service discipline slightly for the ε job so that the entire difference in
overall response time is experienced by the ε job (and all other jobs experience exactly the same response
time in Syst(εA) and in Syst(εR)).

Our modified scheduling policy is as follows. In accordance with LRF, among the regular (non-ε) jobs,
class-A and class-B jobs have priority over class-R jobs. In Syst(εA), the ε job has lowest preemptive priority
among class-A jobs. In Syst(εR), the ε job has highest preemptive priority among class-R jobs on server 1
and lowest preemptive priority among all jobs (both class-B and class-R) on server 2. That is, the ε job is
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N εi(t) The number of jobs in Syst(εi), i = A,R, at time t

∆ The difference in total response time between Syst(εA) and Syst(εR)

X1 The time at which the ε job will complete service at server 1 in Syst(εA), (for Thms 1
and 2, assuming there is no δ job)

X2 The time at which the ε job will complete service at server 2 in Syst(εR), if server 1
did not exist (for Thms 1 and 2, assuming there is no δ job)

X3 The time at which Syst(εA) first empties of all class-R jobs and the ε job (for Thms 1
and 2, assuming there is no δ job)

∆(δj) The difference in total response time when switching ε jobs from class-A to class-R,
assuming δ jobs are class-j, j = A,R

Xδ
1 The time at which the δ job will complete service at server 1 in Syst(εi, δA), i = A,R,

assuming there is no ε job

Xδ
2 The time at which the δ job will complete service at server 2 in Syst(εi, δR), i = A,R

if server 1 did not exist, assuming there is no ε job

Xδ
3 The time at which Syst(εi, δA), i = A,R first empties of all class-R jobs and the δ job,

assuming there is no ε job

X1(δj) The time at which the ε job will complete service at server 1 in Syst(εA, δj), j = A,R,
assuming that the δ job exists

X2(δj) The time at which the ε job will complete service at server 2 in Syst(εR, δj), j = A,R
if server 1 did not exist, assuming that the δ job exists

X3(δj) The time at which Syst(εA, δj), j = A,R first empties of all class-R jobs and the ε job,
assuming that the δ job exists

Z1 The duration of a server-1 busy period started by the ε job and consisting only of
class-A jobs and the ε job

Z2 The duration of a server-2 busy period started by the ε job and consisting only of
class-B jobs, class-R jobs, and the ε job

Z3 The duration of a class-R busy period (i.e., the time until the system is next empty of
class-R jobs), started by a single class-R job when server 1 is otherwise empty

Table 1: Summary of notation used for Lemma 1 (above double line) and Theorems 1 and 2.

treated the same way at server 1 in both systems (but still consistently with LRF), and if it is served by
server 1 its effect on the waiting times of other jobs at that server is also the same. In Syst(εR), the copy of
the ε job at server 2 is treated consistently with LRF, and it has no effect on the waiting times of other jobs
at server 2.

Let X1 denote the time at which the ε job will complete at server 1 in Syst(εA). Note that X1 represents
a remaining server-1 busy period consisting only of class-A jobs and the ε job. Let X2 denote the time at
which the ε job would complete at server 2 in Syst(εR), if server 1 did not exist (equivalently, if server 1 were
busy working on class-A jobs for the entire time between the ε job’s arrival and when the ε job completes at
server 2). Note that X2 represents a remaining server-2 busy period consisting of class-B and class-R jobs,
including the ε job. In Syst(εR), the ε job completes at time min{X1, X2}. We now consider both cases for
when the ε job could complete in Syst(εR).

Case 1: X1 < X2. See Figure 2. Then at time X1 both systems are empty of class-A jobs, and the ε job
completes in both systems. At this point the two systems recouple: exactly the same set of jobs is present
in both systems, and all jobs have the same completion times in both systems: ∆ = 0.

Case 2: X2 < X1. Then at time X2 both systems are empty of class-B and class-R jobs, and the ε job
departs from server 2 in Syst(εR) but remains in the queue at server 1 in Syst(εA), so starting at time X2

Syst(εA) contains one more job than Syst(εR).
We now consider what happens at time X1, the moment when the ε job departs in Syst(εA). Note that

up until time X1 the response times for all jobs besides the ε job continue to be the same in Syst(εA) and
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Figure 2: Lemma 1, case 1. The ε job completes at time X1 in both systems.

Syst(εR).
Case 2.1: no class-R jobs are present in either system just before time X1. See Figure 3.

Then the ε job completes at time X1 in Syst(εA) and the two systems recouple, so the ε job has no effect
on any other jobs. Hence the difference in overall response time between the two systems is captured by the
difference experienced by the ε job (namely the duration of time for which the ε job is present in Syst(εA)
but not in Syst(εR)), which is ∆ = X1 −X2.

Case 2.2: there are class-R jobs present just before time X1. See Figure 4. At time X1 the ε
job departs from Syst(εA), and a class-R job departs from Syst(εR). There continues to be one more job
in Syst(εA) than in Syst(εR), where this extra job is a class-R job. We will now call this extra class-R job
the ε job, and we will call the other class-R jobs, besides the ε job, regular jobs. We give the ε job lowest
preemptive priority among all class-R jobs at both servers. Now we have the same number of regular class-R
jobs in both systems, with the ε job having no effect on any other job. In Syst(εA), the ε job will complete
at the end of the class-R busy period (the first time the system is empty of all class-R jobs, including the ε
job), at which time the two systems recouple; call the moment at which this happens time X3. In this case
the ε job is in Syst(εA) but not Syst(εR) from time X2 to time X3, so ∆ = X3 −X2.

Putting everything together, we have that the difference in overall response time between Syst(εA) and
Syst(εR), denoted by ∆, is completely captured by the difference in response time for the ε job, where

∆ =


0, X1 < X2

X1 −X2, X1 > X2 and no class-R jobs present just before X1

X3 −X2, X1 > X2 and class-R jobs present just before X1

= IX2<X1
(X3 −X2) (1)

≥ 0,

where I is an indicator variable equal to 1 if the subscripted expression is true and 0 otherwise, and we define
X3 = X1 if there are no class-R jobs in the system immediately before time X1.

Since each class-A, class-B, and regular class-R job experiences the same response time in Syst(εA) as
in Syst(εR), we thus have that there are at least as many jobs in Syst(εA) as in Syst(εR) at all times:
{N εA(t)}τt=0 ≥ {N εR(t)}τt=0 for all τ . �

Lemma 1 tells us that on any sample path, switching a single job from class-A to class-R leads to a
reduction in the number of jobs in the system, and hence in the overall system response time of all jobs in
the sample path. Corollary 1 follows immediately from the repeated application of Lemma 1.
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Figure 3: Lemma 1, case 2.1. The ε job completes at time X2 in System II, and there are no class-R jobs in the system just
before time X1.

Figure 4: Lemma 1, case 2.2. The ε job completes at time X2 in System II, and there are class-R jobs in the system just before
time X1.
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Corollary 1. On any sample path, if any number of jobs are changed from class-A to class-R, then ∆ ≥ 0
and {N εA(t)}τt=0 ≥ {N εR(t)}τt=0 for all times τ .

Finally, we consider response time in steady state as a function of the proportion of jobs that are redun-
dant. Again suppose that we have a general exogenous arrival process, where the arrivals are independent
of the state of the system and the scheduling policy, and such that the system is stable. Let pA, pB , and
pR denote the fraction of jobs that are class-A, class-B, and class-R respectively (pA + pB + pR = 1). We
assume that the class of each arriving job is chosen by i.i.d. splitting, so the jth arrival is of class i with
probability pi, i = A,B,R.

In our coupling, all arriving jobs have the same class in Syst(εA) and Syst(εR) except an ε fraction of the
jobs, which are class-A in Syst(εA) and class-R in Syst(εR).

We define Ti(pR) as the steady state response time of class-i jobs and T (pR) as the overall steady state
response time for all jobs when pR is the fraction of jobs that are redundant. We assume pB is held fixed,
and pA varies (inversely) with pR, where pA = 1− pB − pR. Our stability conditions ensure that the steady
state response times are well defined.

We remind the reader that for two random variables X and Y , we say X ≥st Y , i.e., X is stochastically
larger than Y , if P {X > x} ≥ P {Y > x} for all x. Equivalently, X ≥st Y if we can construct coupled
versions X̃ and Ỹ (i.e., X̃ and Ỹ are on the same probability space) so that X̃ ≥ Ỹ with probability 1.

Corollary 2. As the fraction of redundant jobs, pR, increases, holding pB constant:

1. T (pR) is stochastically decreasing, so E [T (pR)] is decreasing.

2. TA(pR) is stochastically decreasing, so E [TA(pR)] is decreasing.

3. TB(pR) is constant, so E [TB(pR)] is constant.

Proof. Using the above coupling between Syst(εA) and Syst(εR), part 1 follows immediately from Lemma 1.
Parts 2 and 3 follow from the fact that class-A (respectively, class-B) jobs have preemptive priority over
class-R jobs and therefore experience an independent G/M/1 queue consisting only of class-A (class-B) jobs.
�

The mean response time for class-R jobs, E [TR(pR)], may either increase or decrease as pR increases; we
discuss this further in Section 4.4.

4.2. Second-Order Effects

We now turn to second-order effects of additional redundancy on overall mean response time. First we
study convexity.

We again consider the effects of shifting some jobs, which we call ε jobs, from class-A to class-R. We will
see how ∆, the difference in overall response time when the ε jobs are class-A versus class-R, changes if we
increase pR to pR + δ while decreasing pA to pA − δ. Later we consider the cross-derivative and determine
how ∆ changes if we increase pR while decreasing pB and holding pA constant. Our proof of the convexity
result requires Poisson arrivals, but the cross-derivative result does not. We conjecture that the convexity
result holds more generally, e.g., for renewal arrival processes; while our proof does not easily extend to this
setting, this conjecture is strongly supported by simulation results (see Section 4.4).

Theorem 1. With Poisson arrivals, mean response time is convex in the fraction of redundant jobs.

Proof. We construct four coupled systems with two types of tagged jobs, which we call ε jobs and δ jobs. In
our coupling, all arriving jobs have the same class in all four systems, except the ε and δ jobs. In Syst(εi, δj)
the ε jobs are class-i and the δ jobs are class-j, i = A,R, j = A,R.

The ε jobs capture the marginal effect on mean waiting time from increasing the number of redundant
jobs starting from a fixed initial number (i.e., moving from Syst(εA, δA) to Syst(εR, δA) and moving from
Syst(εA, δR) to Syst(εR, δR)). The δ jobs capture the change in the marginal effect of the ε jobs when starting
with a larger number of redundant jobs (i.e., when starting in Syst(εA, δA) versus Syst(εA, δR)).

Our scheduling policy is as follows. In accordance with LRF, among the regular (non-ε and non-δ) jobs,
class-A and class-B jobs have preemptive priority over class-R jobs. Both ε and δ jobs have lower priority
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(a) Syst(εA, δA) (b) Syst(εR, δA) (c) Syst(εA, δR) (d) Syst(εR, δR)

Figure 5: The four systems that are coupled in the proof of Theorem 1. The four systems differ in their relative prioritizations
of class-A, class-B, δ, and ε jobs.

than all class-A jobs and higher priority than all class-R jobs on server 1, and both have lowest priority of
all jobs on server 2. When the δ job is class-A, it has higher priority than the ε job on server 1. When the δ
job is class-R, it has lower priority than the ε job on server 1 and higher priority on server 2. Note that all
of these priority orderings, illustrated in Figure 5, are consistent with LRF, and the ε jobs are treated the
same as in the proof of Lemma 1.

Define ∆(δA) = T (εA,δA) − T (εR,δA) to be the difference in response time when switching ε jobs from
class-A to class-R when δ jobs are class-A (i.e., when going from Syst(εA, δA) to Syst(εR, δA), and define
∆(δR) = T (εA,δR) − T (εR,δR) to be the difference in response time when switching ε jobs from class-A to
class-R when δ jobs are class-R (i.e., when going from Syst(εA, δR) to Syst(εR, δR). We will show that
E [∆(δA)] ≥ E [∆(δR)], where the expectation is taken over all sample paths.

As in our proof of Lemma 1, we will begin by assuming that the system contains a single ε job and a
single δ job (Lemma 2). Theorem 1 then will follow immediately from Corollary 3, in which we allow the
system to contain any fixed number of ε and δ jobs, and Corollary 4, in which we allow a fraction of jobs to
be ε jobs and δ jobs.

Lemma 2. If the system contains a single ε job and a single δ job, then E [∆(δA)] ≥ E [∆(δR)].

Proof. We will assume for now that the ε job arrives before the δ job. As in the proof of Lemma 1, when
the departure of the ε job results in Syst(εA, δA) and Syst(εA, δR) having one extra class-R job relative to
Syst(εR, δA) and Syst(εR, δR), we will “relabel” a regular class-R job to be called the ε job, and give this
relabeled job lowest preemptive priority among all class-R jobs. Let time 0 be the arrival time of the ε job
and let τ > 0 be the arrival time of the δ job. We define X1, X2, and X3 as in the proof of Theorem 1 (in
these definitions we assume that the δ job does not exist). Define Xδ

1 , Xδ
2 , and Xδ

3 analogously for the δ job,
assuming that the ε job does not exist.

Let X1 + Z1 be the time at which the ε job departs from server 1 in Syst(εA, δA), assuming 0 ≤ τ ≤ X1.
X1 represents the duration of a server-1 busy period started by the class-A work already present in the queue
when the ε job arrives, and consisting only of class-A jobs and the δ job. Z1 represents the duration of a
server-1 busy period started by the ε job and consisting only of class-A jobs and the ε job. Similarly, let
X2 + Z2 be the time at which the ε job would depart from server 2 in Syst(εR, δR), assuming τ ≤ X2. X2

represents the duration of a server-2 busy period started by the class-B and class-R work already present
in the queue when the ε job arrives, and consisting only of class-B jobs, class-R jobs, and the δ job. Z2

represents the duration of a server-2 busy period started by the ε job and consisting of class-B jobs, class-R
jobs, and the ε job. Let X3 + Z3 be the time until there are no class-R jobs in the system if we add one
more class-R job at time X3, i.e., Z3 represents the duration of a class-R busy period started by a single
class-R job when server 1 is otherwise empty. Note that this class-R busy period could end with a service
completion at either server 1 or server 2.

Finally, we define Xi(δj) analogously, where we now assume that the δ job does exist and δj denotes the
class of the δ job, j = A,R. For example, X1(δA) represents the time at which the ε job would complete at
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server 1 if the δ job is a class-A job; this is the time at which the ε label is reassigned to a regular class-R
job in Syst(εA, δA).

We can immediately write the following expressions for the Xi(δj) terms for i = 1, 2, j = A,R:

X1(δA) = X1 + Iτ≤X1 · Z1

X1(δR) = X1

X2(δA) = X2

X2(δR) = X2 + Iτ≤X2 · Z2.

We will derive expressions for X3(δj), j = A,B, below.
By the argument used to derive equation (1) in Lemma 1, we have the following for i = A,R:

∆(δi) = IX2(δi)<X1(δi)(X3(δi)−X2(δi)). (2)

If X2 > X1, then ∆(δR) = 0 ≤ ∆(δA) and we are done. Similarly, if τ > max{X2, X3} then the δ job
arrives after the ε job has already departed, so ∆(δR) = ∆(δA), and again we are done. We now consider
the case in which X2 < X1 ≤ X3 and τ ≤ X3. The proof of Lemma 2 will follow from the following lemmas.

Lemmas 3-5 address the case in which τ < X1, meaning that the δ job has arrived before the ε job
departs in Syst(εA, δA) and Syst(εA, δR). We begin in Lemma 3 by studying Syst(εA, δA) and Syst(εR, δA),
in which the δ job is class-A.

Lemma 3. If τ < X1 and X2 < X1, then ∆(δA) ≥ X3 + Z3 −X2.

Proof. We know that X2(δA) = X2, so in Syst(εR, δA) the (class-R) ε job departs at time X2.
All that remains is to show that X3(δA) ≥ X3 + Z3; X3(δA) is the time at which the ε job will depart

from Syst(εA, δA). If the (class-A) δ job did not exist, then the (class-A) ε job would depart the system at
time X1. If there were no class-R jobs present at X1, then X3 = X1 by definition. If there were class-R jobs
present at time X1, then the ε label would be reassigned to the lowest priority class-R job, which would leave
the system at time X3 > X1. Here X3 represents the time at which all class-R jobs in the system would
have completed if there were no δ job. Instead, because τ ≤ X1, the δ job departs at time X1 instead of the
ε job. At time X1 + Z1 the ε job departs and, if there are class-R jobs present, the ε label is reassigned to
the lowest priority class-R job.

We know that X3(δA) ≥ X1(δA) = X1 + Z1, so if X3 + Z3 < X1 + Z1 we are done. Suppose X3 + Z3 ≥
X1+Z1. If there are no regular class-R jobs in the system at X1+Z1, then X1+Z1 = X3+Z3 = X3(δA), and
we are done. If there are regular class-R jobs in the system at time X1+Z1, then the ε job becomes the lowest
priority class-R job and leaves at time X3(δA) = X3+Z3. Hence X3(δA) = max{X1+Z1, X3+Z3} ≥ X3+Z3

as desired. �

Lemmas 4 and 5 deal with Syst(εA, δR) and Syst(εR, δR), in which the δ job is class-R.

Lemma 4. If τ < X1 and X2 < X1 and Xδ
2 < Xδ

1 , then ∆(δR) ≤ X3 −X2.

Proof. In this case, the (class-R) δ job has already completed before time Xδ
1 = X1 = X1(δR), so X3(δR) =

X3, and ∆(δR) = X3 − (X2 + Iτ≤X2
· Z2) and we are done. �

Lemma 5. If τ < X1 and X2 < X1 and Xδ
2 ≥ Xδ

1 , then ∆(δR) = X3 + Z3 −X2.

Proof. In this case, the (class-R) δ job completes at time X1, and the ε label is reassigned to the lowest
priority class-R job, which completes at time X3 + Z3. �

Finally, Lemmas 6 and 7 handle the case in which X1 < τ , meaning that when the δ job arrives, the ε
job has departed from all four systems, and Syst(εA, δA) and Syst(εA, δR) contain an extra “relabeled” ε job.

Lemma 6. If X2 < X1 ≤ τ < X3 and Xδ
2 < Xδ

1 , then ∆(δA) = X3 − X2 and ∆(δR) = X3 + Z3 − X2 =
∆(δA) + Z3.
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Proof. In Syst(εR, δA) and Syst(εR, δr), the ε job completes at time X2, before the δ job arrives. In
Syst(εA, δR), the ε label is reassigned to the lowest priority class-R job at time X1. In Syst(εA, δA), the
ε job leaves at time X3. In Syst(εA, δR), the δ job leaves at time Xδ

2 = X3 and the ε job leaves at time
X3 + Z3. �

Lemma 7. If X2 < X1 ≤ τ < X3 and Xδ
2 ≥ Xδ

1 , then ∆(δA) = ∆(δR) = X3 + Z3 −X2.

Proof. Since Xδ
1 ≤ Xδ

2 , the δ job completes at Xδ
1 ≤ X3 in all systems. Note that a class-R job would have

completed at Xδ
1 if there were no δ job. Therefore, starting from time Xδ

1 , there is one more class-R job in
all systems than there would have been if the δ job had not arrived, so X3(δA) = X3(δR) = X3 + Z3. �

Putting Lemmas 3-7 together, we have ∆(δR) ≤ ∆(δA) in all cases except, from Lemma 6, when X2 <
X1 ≤ τ < X3 and Xδ

2 < Xδ
1 . In this case ∆(δR) = X3 + Z3 −X2 = ∆(δA) + Z3. From Lemmas 3 and 4, we

have ∆(δR) ≤ ∆(δA)− Z3 when τ ≤ X2 < X1. Therefore, we will have E [∆(δR)] ≤ E [∆(δA)] as long as

Pr{τ ≤ X2 < X1|X2 < X1 < X3} ≥ Pr{X1 < τ < X3|X2 < X1 < X3}. (3)

Here is the first time we use our assumption of Poisson arrivals. Let XR be the time, starting in steady
state, until the first moment at which there are no class-R jobs. Recall that X2 represents a busy period
for server 2 started in steady state (from PASTA), consisting of class-B and class-R jobs at server 2 and
assuming no class-R jobs are served on server 1, and X1 represents a busy period for class-A jobs in steady
state. Therefore [XR|X2 ≤ X1 < X3] =st [X2|X2 < X1 < X3]. On the other hand, [X3−X1|X2 ≤ X1 < X3]
represents a remaining busy period for class-R arrivals only, to either server, starting at time X1, and at X1

we know that earlier in the busy period, at time X2, there were no class-R jobs. Therefore

[X3 −X1|X2 < X1 < X3] ≤st [XR|X2 < X1 < X3], (4)

and the result follows. The case in which the δ job arrives first is similar, so is omitted. �

This completes the proof of Lemma 2. �

By repeatedly applying Lemma 2 to allow the system to contain additional ε and δ jobs, we immediately
obtain Corollary 3.

Corollary 3. For a fixed number of ε jobs and a fixed number of δ jobs, E [∆(δA)] ≥ E [∆(δR)].

Our last step is to define our four systems so that ε and δ fractions of jobs shift from being class-A to
class-R, rather than a fixed number of jobs. We now have (holding pB constant):

• In Syst(εA, δA), pA fraction of jobs are class-A and pR fraction of jobs are class-R.

• In Syst(εA, δR), pA − δ fraction of jobs are class-A and pR + δ fraction of jobs are class-R.

• In Syst(εR, δA), pA − ε fraction of jobs are class-A and pR + ε fraction of jobs are class-R.

• In Syst(εR, δR), pA − ε− δ fraction of jobs are class-A and pR + ε+ δ fraction of jobs are class-R.

Using this definition, Corollary 4 immediately follows.

Corollary 4. If some fraction of the jobs in the system are ε jobs and some fraction are δ jobs, then
E [∆(δA)] ≥ E [∆(δR)].

Theorem 1 follows directly from Corollary 4.
Next we consider the effect of changing both class-A and class-B jobs to become redundant class-R jobs.

We find that as more jobs shift from class-B to class-R, the marginal benefit of shifting jobs from class-A to
class-R increases. This is surprising given our earlier result (Theorem 1) that the marginal benefit decreases
as more jobs shift from class-A to class-R while holding the fraction of class-B jobs constant. Theorem 2 tells
us that we can achieve a significant response time benefit from a symmetric system assuming we allow some
class-B jobs to become redundant whenever we allow some class-A jobs to become redundant. Here we no
longer require the arrival process to be Poisson; it can be any general exogenous process, where the arrivals
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must be independent of the state of the system and of the scheduling policy. We assume that the class of
each arriving job is chosen by i.i.d. splitting, so the jth arrival is of class i with probability pi, i = A,B,R.
Let T (pA, pB) denote the response time in a system in which pA fraction of the jobs are class-A, pB fraction
of the jobs are class-B, and pR = 1− pA − pB fraction of the jobs are class-R.

Theorem 2. For a general exogenous arrival process and an arbitrary system busy period, we can define the
systems on the same probability space so that

T (pA, pB)− T (pA − ε, pB) < T (pA, pB − δ)− T (pA − ε, pB − δ) (5)

with probability 1. That is, as an increasing fraction of jobs shift from class-B to class-R, the marginal
benefit of shifting jobs from class-A to class-R increases.

Proof. Our setup is the same as before, with the ε job as defined in the proof of Theorem 1 so that it captures
the marginal benefit of increasing the fraction of class-R jobs while decreasing the fraction of class-A jobs.
The δ job can either be a class-B job or a class-R job. We couple four systems, where in Syst(εi, δj) the ε
job is class-i, i = A,R and the δ job is class-j, j = B,R.

As in the proof of Theorem 1, let T (εi,δj) denote the response time in Syst(εi, δj), and let ∆(δj) =
T (εA,δj) − T (εR,δj), j = B,R.

Again we begin by assuming that the system contains a single ε job and a single δ job. Using the same
notation as in the proof of Theorem 1, and assuming the ε job arrives at time 0 and the δ job arrives at time
τ > 0, we have

X1(δB) = X1(δR) = X1

X2(δB) = X2(δR) = X2 + Iτ≤X2 · Z2.

We also have X3(δB) = X3(δR) if τ ≤ X1 and X2 + Iτ≤X2 · Z2 < X1. Hence ∆(δB) = ∆(δR), except in the
case in which X2 < X1 < τ ≤ X3. In this case the ε job is no longer in the system at time τ in Syst(εR, δB)
and Syst(εR, δR), while in Syst(εA, δB) and Syst(εA, δR) the ε label has been reassigned to the lowest priority
class-R job. If in Syst(εR, δR) the δ job is served by server 2, then in Syst(εR, δB) the δ job is served at the
same time on server 2, so again ∆(δB) = ∆(δR).

Finally, if in Syst(εR, δR) the δ job is served by server 1, then it is served at time X3, and X3(δR) = X3+Z3

while X3(δB) = X3 ≤ X3(δR). In this case ∆(δB) < ∆(δR).
By repeatedly applying this argument, we have that if a fixed number of δ jobs shifts from class-B to

class-R, the marginal benefit of shifting a fixed number of ε jobs from class-A to class-R increases.
The theorem immediately follows from this result. �

Corollary 5. If µ1 = µ2 and pR is held constant, then E [T ] is minimized when pA = pB.

Proof. By Theorem 1,

E [T (p+ x, p− x)]− E [T (p, p− x)] > E [T (p, p− x)]− E [T (p− x, p− x)] . (6)

By Theorem 2,
E [T (p, p− x)]− E [T (p− x, p− x)] > E [T (p, p)]− E [T (p− x, p)] . (7)

Since µ1 = µ2, we also have
E [T (p− x, p)] = E [T (p, p− x)] . (8)

Combining (6), (7), and (8), we have

E [T (p+ x, p− x)]− E [T (p, p− x)] > E [T (p, p)]− E [T (p, p− x)] ,

and so
E [T (p+ x, p− x)] > E [T (p, p)] .

�
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Figure 6: Mean response time under LRF as a function of pA and pB when λ = 1.6 and µ1 = µ2 = 1.

4.3. Generalizing to Larger Nested Systems

While the proofs presented in the preceding sections apply specifically to the W model, our approach
extends to any nested system. Suppose we have a nested redundancy system, and let class A be some class
that shares servers with a more-redundant class. Let class R be the class with smallest |SR| such that
SA ⊂ SR. To prove the analogue of Lemma 1 for general nested systems, we need only modify very slightly
the definitions used in the proof of Lemma 1.

Lemma 8. In a general nested system with two classes A and R such that SA ⊂ SR, mean response time is
convex in pR, holding pA + pR constant and holding pi constant for all classes i 6= A,R.

Proof. (Sketch). We again consider a fixed sample path. We couple two systems, where we switch one job,
called the ε job, from being a class-A job in Syst(εA) to being a class-R job in Syst(εR). Unlike in the W
model, SA may now consist of more than one server, so we need to specify in slightly more detail how we
prioritize the ε job. In Syst(εA) we let the ε job have lowest priority among class A jobs, and in Syst(εR)
we let it have highest priority among class-R jobs on the servers in SA and lowest priority among class-R
jobs on the servers in SB = SR\SA. In addition, there may be other classes besides class A and class R
that share the servers in SA; such a class i may have Si ⊂ SA or Si ⊃ SR. We therefore need to redefine X1

and X2, which in Lemma 1 referred to class-A and class-R busy periods. We redefine X1 as the remaining
class-A busy period under LRF in Syst(εA), where here by a “class-A busy period” we mean the time until
the system is empty of class-A and higher priority jobs, and the ε job, on the servers in SA. We redefine X2

as a remaining class-R busy period for the servers in SB , assuming the servers in SA do not exist; that is, a
“class-R busy period” is the time until the servers in SB are empty of class-R jobs. Given these redefinitions,
the rest of the argument follows analogously with the proof of Lemma 1 for the W model. �

Similarly, redefining Xδ
i and Xi(δj) to account for the additional servers and job classes allows us to

extend the results of Theorems 1 and 2 to general nested systems.

4.4. Numerical Results

In this section we use simulation to illustrate the analytical results presented above. Unless otherwise
specified, the results shown are for the W model (see Figure 1).

4.4.1. Overall Mean Response Time

Figure 6 shows mean response time under LRF as a function of pA and pB (pR = 1 − pA − pB) when
µ1 = µ2 = 1. The monotonicity of mean response time and the convex shape are clear from the left-
hand figure: holding pB constant, as pA increases mean response time increases convexly, consistent with
Theorem 1. The right-hand figure shows a contour map of mean response time as a function of pA and pB ;
warmer colors represent higher mean response time, while cooler colors represent lower mean response time.
The contour map illustrates the cross-derivative result (Theorem 2). When pB is high, the contour lines
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Figure 7: Mean response time under LRF as a function of pA and pB when λ = 2.4, µ1 = 1, and µ2 = 2.

are nearly vertical, indicating that changing pA has very little effect on mean response time. But when pB
is low, the contour lines shift to being nearly horizontal, indicating that decreasing pA significantly reduces
mean response time. Both results are symmetric in pA and pB , indicating that for a fixed pR it is best to
set pA = pB (Theorem 5).

Figure 7 shows mean response time as a function of pA and pB in an asymmetric system in which server
2 has twice the speed of server 1. When the servers no longer have equal rates, mean response time no longer
is symmetric in pA and pB , but the monotonicity and convexity results still hold.

4.4.2. Per-Class Mean Response Time
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Figure 8: Per-class mean response times under LRF as a function of pR when (a) pB = 0.1 and (b) pB = 0.6. Here µ1 = µ2 = 1,
λ = 1.6, and pA decreases as pR increases.

Corollary 2 tells us that as the fraction of redundant jobs increases (while holding pB constant), the mean
response time for class-A jobs is decreasing, the mean response time for class-B jobs is constant, and the
overall mean response time is decreasing. Indeed, our simulations corroborate this result (see Figure 8). On
the other hand, our analytical results do not tell us anything about the effect of pR on the mean response
time for class-R jobs. We see in Figure 8(a) that when pB = 0.1 the class-R mean response time is concave
and non-monotonic in pR. At first, increasing pR slightly results in an increase in class-R’s mean response
time. However, after reaching a maximum at around pR = 0.5, the mean response time then decreases. This
is because when pR is very low (i.e., pA is high), nearly all class-R jobs receive service at server 2, where
they wait behind a relatively small number of class-B jobs. As pR increases slightly from this low starting
point (i.e., class-A jobs switch to being class-R), the traffic at server 2 increases slightly and class-R jobs
experience longer mean response times. Once pR is high enough some class-R jobs end up in service on server
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Figure 9: Mean response time for class-R jobs as a function of pA and pB under LRF when µ1 = µ2 = 1 and λ = 1.6.
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Figure 10: Mean response time under LRF where the mean arrival rate is λ = 1.6 and the mean service rate at each server is
µ1 = µ2 = 1. Here pB = 0.1 is constant and pA varies inversely with pR.

1, at which point the benefit of getting to experience the shorter waiting time across two servers begins to
outweigh the cost of increasing the traffic at one of those two servers.

When the fraction of jobs that are class-B is higher (pB = 0.6, Figure 8(b)), the shape of the class-R
mean response time changes. Now, the mean response time for class-R jobs is convex and decreasing as
pR increases. When pB is high and λ is high, the load on server 2 due to class-B jobs is high so only a
small fraction of class-R jobs receive service at server 2. Increasing pR slightly increases the number of jobs
that benefit from waiting in both queues, so the class-R mean response time decreases. As pR increases the
marginal benefit of further jobs becoming redundant decreases—the class-R mean response time is convex—
because with high load at server 2 fewer and fewer “new” class-R jobs actually end up in service on server
2. Figure 9 illustrates the effect of changing pA and pB on the class-R mean response time in more detail.

4.4.3. Relaxing Exponentiality Assumptions

In this section we study how relaxing our assumptions of Poisson arrivals and exponential service times
affects mean response time. Our goal is to understand if our results hold more generally, or if they require
exponentiality assumptions. Figure 10(a) shows mean response time under LRF in a system with general
(non-Poisson) arrivals, where pB = 0.1 is fixed. Our monotonicity result in Lemma 1 holds for any exogenous
arrival process, and indeed we see that mean response time is monotonically decreasing in pR with both
Erlang and Hyperexponential interarrival times. As expected, when interarrival times are less variable mean
response time decreases relative to Poisson arrivals, whereas when interarrival times are more variable mean
response time increases.

Our proof of Theorem 1, which states that mean response time is convex in pR, requires Poisson arrivals,
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Figure 11: Mean response time under LRF where µ1 = µ2 = 1 and the interarrival times follow a two-phase Erlang distribution
with mean rate 1.6 (top row) and a two-phase Hyperexponential distribution with mean rate 1.6 and squared coefficient of
variation 10 (bottom row).

though Corollary 2, that mean response time is decreasing, does not. Our numerical results suggest that the
convexity result holds more generally for any exogenous arrival process.

Conjecture 1. Under LRF, mean response time is convex in pR for any exogenous arrival process.

Figure 11 supports this conjecture: with both Erlang and Hyperexponential interarrival times, overall
mean response time under LRF appears to be convex. The contour plots (right-hand column of Figure 11)
show the cross-derivative result from Theorem 2 (which holds for general interarrival times): as pB increases,
there is decreasing marginal benefit from further class-A jobs becoming redundant.

In contrast, whether our monotonicity and convexity results hold under general service times appears to
depend on the particular characteristics of the service time distribution. Figure 10(b) shows mean response
time under LRF with general service times and Poisson arrivals, where again pB = 0.1 is constant. Under
Hyperexponential service times mean response time appears to be both monotonically decreasing and convex
in pR. Perhaps counterintuitively, when pR is high mean response time actually can be lower than with less-
variable exponential service times. This happens because when service times are i.i.d. and more highly
variable, there is a larger potential gain from running a job on multiple servers; when pR is low the negative
effects of the non-redundant jobs having highly variable service times begin to dominate and mean response
time becomes very high.

On the other hand, under Erlang service times mean response time is not monotonically decreasing in
pR. When pR is very high the system can even become unstable. This is because a job that draws two i.i.d.
Erlang service times likely sees two service times that are reasonably close together. The consequence is that
redundancy adds load to the system, causing instability when the arrival rate is sufficiently high. As pR
decreases slightly fewer jobs actually run on both servers, so less work is wasted, and instead the redundant
jobs get to benefit from experiencing the shorter of two queueing times. When pR decreases further, this
queueing benefit is lost and mean response time again increases. Figure 12 shows mean response time with
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Figure 12: Mean response time under LRF where λ = 1.6 and service times follow a two-phase Erlang distribution with mean
1 (top row) and a two-phase Hyperexponential distribution with mean 1 and squared coefficient of variation 10 (bottom row).

both Erlang and Hyperexponential service times as both pA and pB vary; here we can see clearly that none
of the monotonicity, convexity, or cross-derivative results hold under Erlang service times.

The observation that whether redundancy helps depends on the service time distribution is consistent
with analytical results in the prior work. For example, when job sizes follow a New Worse than Used
distribution it is best to make all jobs fully redundant [25]. We conjecture that a similar condition is
required for monotonicity and convexity under LRF.

4.4.4. Larger Nested Systems

Thus far we have focused on the W model, which, as a very small nested system, provides a useful
case study for understanding our results. However, all of our results apply to any general nested system.
Here we study the system shown in Figure 13, which has four servers and seven job classes with differing
degrees of redundancy. We begin by assuming that a third of all jobs are “fixed” at each redundancy degree
(i.e., p0 + p1 + p2 + p3 = p4 + p5 = p6 = 1/3) and study the effect of shifting jobs from less-redundant
classes to more-redundant classes. This setup allows us to investigate not only the benefit of having more
jobs that are redundant, but also the impact of the degree of redundancy. For simplicity, we assume the
system is symmetric, meaning that all servers have the same rate and all job classes with the same degree
of redundancy have the same arrival rate.

We consider three cases: shifting non-redundant jobs (classes 0, 1, 2, and 3) to being partially redundant
(classes 4 and 5), shifting non-redundant jobs to being fully redundant (class 6), and shifting partially
redundant jobs to being fully redundant. In all cases, increasing the fraction of jobs that are more redundant
leads to a decrease in overall mean response time. The largest impact comes from shifting non-redundant
jobs to being fully redundant: the previously non-redundant jobs benefit from their increased redundancy,
and class-4 and 5 jobs benefit significantly because they no longer have to wait behind any non-redundant
jobs. Interestingly, the impact of shifting partially redundant jobs to being fully redundant is the same as
that of shifting non-redundant jobs to being partially redundant. This suggests that increasing the overall
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Figure 13: (a) A nested system with four servers and seven job classes. (b) Mean response time under LRF in the system at
left, where each server has rate 1 and λ = 3.2. At all times we hold p0 = p1 = p2 = p3 and p4 = p5. In the baseline system,
p0 + p1 + p2 + p3 = p4 + p5 = p6 = 1/3, and we study the effect of shifting class 4 and 5 job to class 6 (solid blue line), shifting
class 0,1,2, and 3 jobs to class 6 (dot-dashed red line), and shifting class 0, 1, 2, and 3 jobs to classes 4 and 5 (dashed green
line).

amount of redundancy in the system is more important than precisely where in the system the redundancy
is added.

In practice, data centers typically are even larger, consisting of many hundreds or thousands of servers.
The “medium-sized” system studied here represents a useful case study for understanding how the system
response to varying the redundancy degree among several possible levels. The lessons learned in this smaller
system are likely to translate to even larger, more realistically sized redundancy systems.

5. Convexity Under FCFS and PF

We now turn to scheduling policies other than LRF. Apart from the change in scheduling discipline at
each server, the model otherwise remains as defined in Section 3. In Section 5.1 we consider First Come
First Served (FCFS) scheduling, and in Section 5.2 we consider Primaries First (PF) scheduling.

5.1. FCFS

We have previously derived exact closed-form results for per-class and overall mean response time under
FCFS [16]. We define Ii to be the subsystem in which class-i jobs are fully redundant (this subsystem
includes the servers in Si and the job classes j such that Sj ⊆ Si). Let ρi = λi

µIi
−λIi

+λi
. For completeness,

we repeat Theorem 2 of [16] as Theorem 3 here; we also rephrase the theorem slightly because [16] deals
with the Laplace transform of per-class response time, whereas here we focus on the mean. Note that this
result requires Poisson arrivals.

Theorem 3. In a nested redundancy system with Poisson arrivals and FCFS scheduling, the response time
of class-i jobs is

E [Ti] =
1

µIi − λIi
+

∑
j:Si⊂Sj

ρj
µIj − λIj

. (9)

The overall system mean response time is

E [T ] =
∑
i

piE [Ti] .

Surprisingly, the monotonicity and convexity results that we proved under LRF do not necessarily hold
under FCFS. The overall mean response time actually can increase as the fraction of jobs that are redundant
increases. We can understand this behavior by looking more closely at the per-class mean response times as
pR increases. Proposition 1 follows immediately from the per-class mean response times given in Theorem 3.
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Proposition 1. Consider a nested redundancy system with Poisson arrivals and FCFS scheduling, and let
classes A, B, and R be such that SA ∩ SB = ∅, SA ⊂ SR, and SB ⊂ SR. Then as pA decreases and pR
increases, holding pA + pR and all other class probabilities constant:

1. E [TR] is constant.

2. E [TA] is decreasing and convex.

3. E [TB ] is increasing and concave.

Proof. 1. From Theorem 3, we have

E [TR] =
1

µIR − λIR
+

∑
j:SR⊂Sj

ρj
µIj − λIj

.

This is constant in pR since λIR and all λIj terms include in the sum the term λA + λR.

2. Let c = pA + pR. From Theorem 3, we have

E [TA] =
1

µIA − λIA\A − λ(c− pR)
+

∑
j:SA⊂Sj⊂SR

ρj
µIj − λIj

+
ρR

µIR − λIR
+

∑
j:SA⊂SR⊂Sj

ρj
µIj − λIj

. (10)

All terms in the last summation are constant in pR, and all terms in the first summation are decreasing and
convex (which is easily verified by taking the first and second derivatives). The first term is also decreasing
and convex, but the third term is increasing and concave so we will consider the first and third terms together.
Let

Y =
1

µIA − λIA\A − λ(c− pR)
+

ρR
µIR − λIR

=
1

µIA − λIA\A − λ(c− pR)
+

λpR
(µIR − λIR + λpR)(µIR − λIR)

.

We have dY
dpR

= λ
Y 2
1
− λ

Y 2
2

and d2Y
dp2R

= 2λ2( 1
Y 3
2
− 1

Y 3
1

), where Y1 = µIR − λIR + λpR and Y2 = µIA − λIA\A −

λ(c− pR). If λIR −λIA −λpR < µIR −µIA , dY
dpR

is negative and d2Y
dp2R

is positive, and hence Y and E [TA] are

decreasing and convex.

If instead λIR − λIA − λpR > µIR − µIA (and so dY
dpR

> 0), then there must be some class j such that

SA ⊂ Sj ⊂ SR and λj > µIj − µIj′ , where j′ denotes the most redundant class such that SA ⊆ Sj′ ⊂ Sj .

Let class j be the most redundant such class. Let Z =
ρj

µIj
−λIj

be the term corresponding to class j in

equation (10). We will show that the first derivative of Z (note that this derivative is negative) has greater
magnitude than the derivative of Y , so overall E [TA] still has negative derivative, and we will show that
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Figure 14: Per-class mean response times under FCFS as a function of pR when µ1 = µ2 = 1. Here pB is held constant and pA
decreases as pR increases.
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the second derivative of Z (which is positive) has greater magnitude than the second derivative of Y , so

overall E [TA] still has positive second derivative. We have dZ
dpR

= λ
Z2

1
− λ

Z2
2

and d2Z
dp2R

= 2λ2( 1
Z3

2
− 1

Z3
1

), where

Z1 = µIj − λIj\A − λ(c− pR) + λpj and Z2 = µIj − λIj\A − λ(c− pR). Comparing Y2 and Z1, we find that
Z1 > Y2 since µIj > µIA . Comparing Y1 and Z2, we find that Y1 > Z2 if µIR −µIj > λIR −λIj −λpR. This
is equivalent to saying that we need

∑
i:Sj⊂Si⊆SR

(µIi − µIi′ ) >
∑
i:Sj⊂Si⊂SR

λi, which must be true since j
is the most redundant class with λj > µIj − µIj′ .

Putting this together, we have

dY

dpR
+

dZ

dpR
= λ

(
1

Z2
1

− 1

Y 2
2

+
1

Y 2
1

− 1

Z2
2

)
< 0,

d2Y

dp2R
+
d2Z

dp2R
= 2λ2

(
1

Z3
2

− 1

Y 3
1

+
1

Y 3
2

− 1

Z3
1

)
> 0,

so dE[TA]
dpR

< 0, d2E[TA]
dp2R

> 0, and E [TA] is decreasing and convex.

3. From Theorem 3, we have

E [TB ] =
1

µIB − λIB
+

∑
j:SB⊂Sj

j 6=R

ρj
µIj − λIj

+
ρR

µIR − λIR
.

All terms except the last are constant in pR, hence the only relevant term is

X =
ρR

µIR − λIR
=

λpR
(µIR − λIR + λpR)(µIR − λIR)

.

The first derivative of X is
dX

dpR
=

λ

(µIR − λIR + λpR)2
> 0,

so X and hence E [TB ] is increasing in pR. The second derivative of X is

d2X

dp2R
=

−2λ2

(µIR − λIR + λpR)3
< 0,

so X and hence E [TB ] is concave in pR. �

Since E [TA] is increasing in pR and E [TB ] is decreasing, overall mean response time could either increase
or decrease. Figure 14(b) shows an example of the circumstances under which overall mean response time
can increase, breaking down the overall response time by class. As under LRF, here we consider the W
model with service rate µ = 1 at each server. In this example, the overall arrival rate is high (λ = 1.6)
and the fraction of jobs that are class-B is high (pB = 0.6) so the class-B load on server 2 is very high
(ρB = λB/µ = 0.96). As pR increases (holding pA + pR constant), the load on server 2 increases even
further, so the class-B mean response time, E [TB ], increases. Moreover, the marginal impact on E [TB ]
decreases as pR increases further because most of the newly-redundant class-R jobs end up being served
on server 1. Hence E [TB ] is concave in pR. Consistent with analytical results [16], E [TR] does not change
as a function of pR; E [TA] is relatively unaffected in this example. Since class-B jobs comprise a large
proportion of all jobs, the behavior of E [TB ] dominates the overall mean response time, causing the overall
mean response time to be increasing and concave in pR.

In certain special cases, the monotonicity and convexity results hold under FCFS. One such special case
is a symmetric system, in which all servers are identical with respect to the number of different job classes
they serve and the redundancy degrees of those classes. Furthermore, in a symmetric system all classes i
that have the same |Si| also have the same pi, and as we increase the proportion of more redundant jobs,
we decrease the proportion of all less redundant classes equally. For example, in the W model, holding
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Figure 15: Mean response time under FCFS as a function of pA and pB when λ = 1.6 and µ1 = µ2 = 1.

λ = λA + λB + λR and µ = µ1 + µ2 fixed, letting λA = λB = (λ − λR)/2 and µ1 = µ2 = µ/2 yields a
symmetric system. In this case, the response times in equation (9) become E [TR] = 1

µ−λ and E [TA] =

E [TB ] = 1
µ/2−(λ−λR)/2 + λR

(µ−λ+λR)(µ−λ) , the first of which is constant and the second of which is decreasing

and convex in λR. This result can be extended to more general symmetric systems.
Under FCFS, as under LRF, and regardless of whether the system is symmetric, the cross-derivative

shows an increasing marginal benefit of redundancy: in any nested system, given two classes A and B such
that SA ∩ SB = ∅ and a third class R such that SA ⊂ SR and SB ⊂ SR, as more class-B jobs shift to
becoming class-R jobs, the marginal impact of shifting additional class-A jobs to class-R increases. Let
E [T (pA, pB)] denote the mean response time in a system in which pA fraction of the jobs are class-A and
pB fraction of the jobs are class-B, holding pA + pB + pR constant.

Theorem 4. Consider a nested redundancy system with Poisson arrivals and FCFS scheduling, and let
classes A, B, and R be such that SA ∩ SB = ∅, SA ⊂ SR, and SB ⊂ SR. Then

E [T (pA, pB)]− E [T (pA − ε, pB)] < E [T (pA, pB − δ)]− E [T (pA − ε, pB − δ)] .

That is, as a greater fraction of class-B jobs become redundant, the marginal benefit of shifting jobs from
class-A to class-R increases.

Proof. The proof follows immediately from the exact, closed-form expression for E [T ] given in Theorem 3;
we omit the details. �

The contour plot in Figure 15 illustrates this result. As under LRF, when pB is high the effect of shifting
jobs from class-A to class-R is much smaller than when pB is low.

5.2. Primaries First

Under Primaries First (PF) scheduling, each job designates one of its copies as its primary copy, and all
other copies (if any) are designated secondary copies. At each server, primaries are given strict preemptive
priority over secondaries; within the primaries (respectively, secondaries) all jobs are served in FCFS order
regardless of class. In defining PF, we also must specify which copy of a redundant job is designated its
primary. In [16], we studied the effect of shifting some jobs from class-A to class-R in the W model, assuming
that all class-R primaries are at server 1. For consistency with the prior work we adopt the same definition
of PF here: for our numerical results in the W model, all primary copies are at server 1.

In [16] we considered the impact of introducing redundancy to a system with no redundancy. Here
we want to consider the effect of increasing the proportion of customers that are redundant. We start in
Syst(εA), which consists of pA + ε class-A jobs, pB class-B jobs, and pR class-R jobs, and shift an ε fraction
of jobs from class-A to class-R so that our new system, Syst(εR), has pA class-A jobs, pB class-B jobs, and
pR + ε class-R jobs (with pA + pB + pR + ε = 1). To preserve fairness, we assume that the secondary copies
of the ε jobs, which shift from being class-A to class-R, have lowest preemptive priority among all jobs at
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Figure 16: Per-class mean response times under PF as a function of pR when µ1 = µ2 = 1. Here pB = 0.1 is held constant,
and pA decreases as pR increases.

server 2. This is consistent with our earlier definition of PF scheduling. Let N
(εj)
i (t) be the number of class

i customers at time t in Syst(εj), i = A,B,R, ε, j = A,R, so, e.g., N
(εA)
A (t) and N

(εR)
A (t) count the number

of jobs that are class-A in both systems. Then we have the following, which shows that all customers are
better off when redundancy increases under PF scheduling.

Proposition 2. For an arbitrary exogenous arrival process and exponential service times,

{N (εR)
A (t), N

(εR)
B (t), N

(εR)
R (t), N (εR)

ε (t)}∞t=0 ≤ {N
(εA)
A (t), N

(εA)
B (t), N

(εA)
R (t), N (εA)

ε (t)}∞t=0.

Proof. We consider the argument for a single ε job; it is easily extended to a fixed proportion, ε, as in
Corollaries 1 and 2 for LRF. Note that the ε job has no effect on the class-B jobs, which experience server 2

as if they were the only jobs in both systems, i.e., N
(εR)
B (t) = N

(εA)
B (t), jointly for all t. If the primary copy of

the ε job (which is at server 1) finishes before its secondary copy in Syst(εR), then the ε job finishes at the same

time in both systems, and N
(εR)
i (t) = N

(εA)
i (t) jointly for all t and i = A,B,R, ε. Otherwise, if the secondary

copy of the ε job finishes first in Syst(εR) (let time τ be its completion time), then N
(εR)
ε (t) = N

(εA)
ε (t) jointly

for all t < τ , and N
(εR)
ε (t) < N

(εA)
ε (t) jointly for all t ≥ τ . After time τ , class-A and class-R jobs are “worse

off” in Syst(εA) because of the extra ε job at server 1, which will delay service completions for other jobs.

Hence N
(εR)
A (t) ≤ N (εA)

A (t) and N
(εR)
R (t) ≤ N (εA)

R (t) jointly for all time t. �

Proposition 2 tells us that under PF, all classes of jobs, included the shifted jobs, are better off as jobs
shift to become more redundant.

In Figure 16 we see that, as Proposition 2 tells us, class-B jobs are indifferent to increasing redundancy—
regardless of λ—because all of the secondary copies at server 2 have lower preemptive priority than the class-B
jobs. Class-A jobs benefit from increasing redundancy, but this benefit is smaller than under LRF because
under LRF class-A jobs get full preemptive priority over class-R jobs, whereas under PF the primary copies
of redundant jobs wait in FCFS order at server 1. We note that the class-R curve in Figure 16 includes
both class-R and shifted ε jobs; this combined set of jobs sees a small decrease in mean response time as pR
increases because a small number of class-R jobs have their secondary copies complete service at server 2
before their primary copies complete at server 1; as pR increases more jobs have the opportunity to benefit
from waiting at both servers. Hence, PF is fair in the sense that no class is harmed by increasing redundancy.

Figure 17 illustrates overall mean response time under PF in the W model with service rate µ = 1 at
both servers. Unlike LRF and FCFS, mean response time is not symmetric in pA and pB under PF because
of how we chose which copy of a class-R job to designate as primary. This asymmetry is visible in the
left-hand side of Figure 17. When pB is high, mean response time changes very little as pR increases (so pA
decreases). On the other hand, when pA is high and pR increases (so pB decreases), mean response time is
concave and at first increases but then decreases. This is because when the class-A load is high, shifting jobs
from class-B to class-R (and making the copies on server 1 primary) slightly increases the load at server
1, thereby hurting the class-A jobs, and the class-R jobs become low-priority jobs on server 2 (where their
secondaries are located), thereby hurting the class-R jobs. But once all class-B jobs have become class-R
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Figure 17: Mean response time under PF as a function of pA and pB when λ = 1.6 and µ1 = µ2 = 1.

jobs, the class-R experience is effectively the same as when all class-R jobs were class-B; mean response time
decreases again to reach this point.

While it is difficult to prove convexity under PF, our numerical results suggest that mean response time
is convex in pR, assuming that pB is held constant and that the copies for redundant jobs are primary at
server 1.

Conjecture 2. In a system with Poisson arrivals and exponential service times and PF scheduling, when
pB is held constant, overall mean response time is convex in pR.

Figure 17 supports this conjecture. We further conjecture that a similar cross-derivative result as under
LRF and FCFS also holds under PF.

Conjecture 3. In a system with Poisson arrivals and exponential service times and PF scheduling, as an
increasing fraction of jobs shifts from class-B to class-R (where these jobs’ primary copies are at server 2),
the marginal effect of shifting jobs from class-A to class-R (where these jobs’ primary copies are at server
1) increases.

Figure 17 also supports Conjecture 3. The contour plot in Figure 17 shows that when pB is high, shifting
jobs from class-A to class-R has relatively little effect, whereas when pB is low substantial gains are possible
from making some class-A jobs redundant.

6. Conclusion

This paper studied the marginal effects of increasing redundancy: how much redundancy truly is needed
in order to achieve a significant response time improvement? We investigated this question under three
different scheduling policies, Least Redundant First, First Come First Served, and Primaries First, and
found that the answer depends on the scheduling policy. One of our primary contributions is a proof that
LRF, which we previously showed is optimal with respect to minimizing mean response on any sample
path, yields mean response times that are monotonically decreasing and convex in the fraction of jobs that
are redundant. That is, under LRF scheduling more redundancy is better, but the biggest gains come from
adding only a small amount of redundancy to the system. Our numerical results indicate that this is also true
under PF scheduling. However, redundancy is not always guaranteed to improve response time, nor is more
redundancy necessarily better. In contrast to LRF and PF, under FCFS scheduling increasing the fraction
of jobs that are redundant can actually increase mean response time, and when redundancy does help the
improvement is not necessarily convex. This surprising behavior occurs when one server experiences a high
load due to non-redundant jobs, and jobs of a different class shift to being redundant on that server. We also
studied cross-derivative effects and found that under all three policies, the marginal impact of making jobs
of a particular class more redundant increases in the fraction of jobs of a different class that have become
more redundant. One important implication of this result is that symmetric systems yield lower response
times.
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Our results show that even in a system with i.i.d. exponential service times, redundancy is not a guar-
anteed win. Instead, scheduling plays an important role in whether redundancy helps or hurts. Scheduling
policies that are likely to be successful share the common feature that they defer redundancy until the system
is otherwise idle. Under LRF, this is accomplished by giving less-redundant jobs preemptive priority over
more-redundant jobs. Under PF, this is accomplished by giving extra copies (regardless of redundancy level)
lowest priority. In both cases, the effect is that a server will only work on a redundant copy of a job when
that server’s queue is empty of non-redundant jobs (or primary copies). By “protecting” non-redundant
jobs from having to wait behind redundant copies, LRF and PF allow redundancy to always be a win. In
contrast, FCFS interleaves non-redundant jobs with redundant copies, meaning that a non-redundant job
may have to wait behind (potentially many) copies that could be served elsewhere.

The work in this paper focuses on the i.i.d. exponential case, but the lessons learned from our results
have broader implications for how to schedule jobs in general redundancy systems, where service times may
not be exponentially distributed and may not be independent across an individual job’s copies. In the i.i.d.
exponential setting, redundancy does not add work to the system, so it is particularly striking that it can
nonetheless hurt overall response time. The costs of redundancy will be even more pronounced in systems
in which redundancy can add work to the system. In such systems, it is even more important to ensure
that non-redundant jobs are protected from the potentially harmful effects of waiting behind other jobs’
redundant copies. The observation that it is best to defer redundancy until servers are otherwise idle likely
will be even more crucial in aiding the design of effective scheduling policies for this setting. The results we
present in this paper represent a strong foundation on which to build an even deeper understanding of the
interaction between scheduling and redundancy.
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