
A General “Power-of-d” Dispatching Framework for
Heterogeneous Systems

Jazeem Abdul Jaleel*, Alexander Wickeham*, Sherwin Doroudi*, and Kristen Gardner†

*University of Minnesota-Twin Cities †Amherst College

1. INTRODUCTION
Large-scale systems are everywhere, and deciding how

to dispatch an arriving job to one of the many available
servers is crucial to obtaining low response time. One
common scalable dispatching paradigm is the “power of
d,” in which the dispatcher queries d servers at random
and assigns the job to a server based only on the state
of the queried servers. Such policies incur a much lower
communication cost than querying all servers while sac-
rificing little in the way of performance. However, many
“power of d” policies, such as Join-the-Shortest-Queue-
d (JSQ-d) [4], share a notable weakness: they do not
account for the fact that, in many modern systems, the
servers’ speeds are heterogeneous. Unfortunately, such
heterogeneity-unaware dispatching policies can perform
quite poorly in the presence of server heterogeneity [2].

Motivated by the need for dispatching policies that
perform well in heterogeneous systems, researchers have
designed new policies for this setting. There are two de-
cision points when “power of d” policies can use server
speed information: when choosing which d servers to
query, and when assigning a job to one of those servers.
Many heterogeneity-aware “power of d” policies, such
as Shortest-Expected-Delay-d [5] and Balanced Rout-
ing [1], use only one of these decision points. While
both of these policies generally lead to better perfor-
mance than the fully heterogeneity-unaware JSQ-d pol-
icy, there is still room for improvement. Recent work
has proposed two families of policies that leverage het-
erogeneity at both decision points [2, 3]. The policies in
these families query fixed numbers of “fast” and “slow”
servers, then probabilistically choose whether to assign
the job to a fast or a slow server based on the idle/busy
statuses of the queried servers.

In this paper, we propose a rich general framework
of new policies that expands upon existing work in two
important directions, necessitating more sophisticated
analysis. First, instead of assuming that there are only
two server speeds, we allow for any number of server
speeds. Second, instead of querying deterministic num-
bers of fast and slow servers, we draw the mix of server
speeds to be queried from any arbitrary distribution.

Despite the challenges inherent to our general set-

Copyright is held by author/owner(s).

ting, we present an analysis of mean response time; our
approach also can be used to derive other metrics. Us-
ing our analytical results, we show that the additional
flexibility offered by our policy can lead to substantial
performance improvements over existing policies.

2. MODEL AND POLICY
We consider a system with k servers. There are s

classes of server speeds, S ≡ {1, . . . , s}, where the num-
ber of class-i servers is ki; let qi ≡ ki/k be the fraction
of servers belonging to class-i. The size of a job running
on a class-i server is drawn from a general distribution
with cdf Gi and mean 1/µi, where all such distribu-
tions have the same “shape,” i.e., Gi(x) = Gj(µix/µj).
Classes are indexed in decreasing order of speed, i.e.,
µ1 > · · · > µs. We assume that

∑
i µiqi = 1. Jobs

arrive to the system as a Poisson process with rate λk.
Upon a job’s arrival, the dispatcher (i) queries a given

number (d� k) of servers according to a querying rule,
then (ii) sends the job to one of the queried servers
according to an assignment rule, at which (iii) the job
is queued and/or served according to a work-conserving
scheduling rule. Rules do not use job size information.

When a job arrives, the dispatcher queries d servers
at random according to a querying rule. Let Di de-
note the number of class-i servers in a given query, let
D ≡ (D1, . . . , Ds) denote the query mix, let di and
d ≡ (d1, . . . , ds) denote the realizations of random vari-
able Di and random vector D, respectively, and finally
let D ≡ {d : d1 + · · ·+ ds = d} be the set of all possible
query mixes d. We assume that servers of a given class
are a priori identical, and so they are equally likely to
be queried. A querying rule specifies the distribution
over query mixes. Formally, a querying rule is given by
a function p : D → [0, 1] satisfying

∑
d∈D p(d) = 1. The

querying rule selects servers so that P(D = d) = p(d).
Once a set of servers has been queried, the job is as-

signed to one of these servers probabilistically accord-
ing to an assignment rule, which specifies a distribution
over the queried classes. The rule is based on the re-
alized query mix d and the idle/busy statuses of the
queried servers, which we encode by a ≡ (a1, . . . , as),
where ai is the number of idle class-i servers among the
di queried. The set of all possible a vectors is given by
A ≡ {a : a1 + · · · + as ≤ d}. Note that ai and a are
realizations of the random variable Ai and the random
vector A, respectively.



Formally, an assignment rule is given by a family of
functions αi : A × D → [0, 1] parameterized by i ∈ S.
For all a ∈ A and d ∈ D such that a ≤ d (element-
wise) these families must satisfy

∑
i∈S αi(a,d) = 1 and

αi(a,d) = 0 if di = 0. Given such a family of functions
(together with a query resulting in vectors a ∈ A and
d ∈ D) the dispatcher sends the job to a class-i server
with probability αi(a,d). At this point we assign to an
idle class-i server (if possible) or a busy class-i server
(otherwise), chosen uniformly at random.

We prune the set of assignment rules by avoiding rules
that allow assignment to a slower server when a faster
idle server has been queried. That is, αi(a,d) = 0
whenever there is a class j < i such that aj ≥ 1. More-
over, whenever a 6= 0, the value of αi(a,d) depends only
on j∗ = min{j ∈ S : aj > 0} and on d (specifically, on
{j ≤ j∗ : dj > 0}). This structure allows us to introduce
the following abuse of notation that will facilitate the
discussion of our analysis: αi(j

∗,d) ≡ αi(a,d) for all
j∗ ∈ S and a ∈ A such that j∗ = min{j ∈ S : aj > 0}.
When a = 0, we use our original notation: αi(0,d).

3. ANALYSIS
We carry out all analysis in steady-state. We let

k → ∞, holding qi fixed for all i, and assume that
asymptotic independence holds in this regime, meaning
that (i) the states of all servers (i.e., the number of
jobs and their attained services) are independent, and
(ii) all servers of the same class behave stochastically
identically. Under our querying and assignment rules,
servers of the same class are equally likely to be queried
and, within a class, servers with the same idle/busy sta-
tus are equally likely to be assigned a job. Hence, by
Poisson splitting, it follows that (for any i ∈ S) each
class-i server experiences status-dependent Poisson ar-
rivals with rate λI

i when idle and rate λB
i when busy.

Each class-i server, when busy, operates exactly like a
standard M/Gi/1 system with arrival rate λB

i under the
chosen scheduling rule (so long as the scheduling rule op-
erates independently of the lengths of all past idle peri-
ods). In particular, the mean response time experienced
by jobs at a class-i server, E[Ti] is the same as that in
the corresponding M/Gi/1. Such results are available
in the queueing literature for a variety of scheduling
rules (e.g., First-Come-First-Served, Processor Sharing,
Foreground-Background). Furthermore, recalling that
our scheduling rule must be work-conserving, standard
M/G/1 analysis gives the expected busy period dura-
tion at a class-i server: E[Bi] = 1/(µi−λB

i ). Letting ρi
denote the fraction of time that a class-i server is busy,
applying the Renewal Reward Theorem yields

ρi =
E[Bi]

1/λI
i + E[Bi]

=
λI
i

µi − λB
i + λI

i

. (1)

We find the system’s overall mean response time by
taking a weighted average of the the mean response
times at each server class. Let λi ≡ (1 − ρi)λI

i + ρiλ
B
i

denote the average arrival rate experienced by a class-i
server. It follows that the proportion of jobs that are

sent to a class-i server is kiλi/(kλ) = qiλi/λ, and hence

E [T ] =

s∑
i=1

(
qiλi
λ

)
E [Ti] . (2)

We now proceed to find λI
i and λB

i via mean-field
analysis by tagging a class-i server. Recall that the rate
at which the tagged server is queried does not depend
on its idle/busy status. Given query mix d, the proba-
bility that the query includes the tagged server is di/ki.
Because a query is of mix d with probability p(d), the
tagged server is queried at rate λk

∑
d∈D p(d)(di/ki).

Of course, the tagged server’s presence in the query
does not guarantee that the job will be sent to it. De-
note by rIi (d) (respectively rBi (d)) the probability that
the job is sent to the tagged server under query mix d
given that the tagged server is queried and idle (respec-
tively busy); rIi (d) = rBi (d) = 0 when di=0. Hence, the
arrival rate from queries with mix d observed by the
tagged server when it is idle is λkp(d)(di/ki)r

I
i (d) =

(λ/qi)dip(d)rIi (d), with the analogous expression hold-
ing when the tagged server is busy. The overall arrival
rates to an idle and busy class-i server are then

λI
i =

λ

qi

∑
d∈D

dip(d)rIi (d) (3)

λB
i =

λ

qi

∑
d∈D

dip(d)rBi (d). (4)

Next, we determine rIi (d) and rBi (d) (assuming that
di > 0), beginning with rIi (d). Observe that the job
can be sent to the tagged server only if all faster servers
in the query are busy, which occurs with probability
bi(d) ≡ P(A1 = · · · = Ai−1 = 0|D = d) =

∏i−1
`=1 ρ

d`
` for

a given query mix d. If this is the case, then with prob-
ability αi(i,d) the job is sent to an idle class-i server
chosen uniformly at random; hence, the tagged server is
selected among the ai idle class-i servers with probabil-
ity 1/ai. Enumerating over all possible cases of Ai = ai
(noting that Ai ≥ 1 as the tagged server itself is idle
and part of the query), we find the probability that the
tagged server gets the job when queried with mix d:

rIi (d) = bi(d)αi(i,d)

di∑
ai=1

P(Ai = ai|D = d, Ai ≥ 1)

ai
.

As (Ai|D = d, Ai ≥ 1) ∼ Binomial(di − 1, 1 − ρi) + 1,
we have the explicit expression

rIi (d) = bi(d)αi(i,d)

di∑
ai=1

(
di − 1

ai − 1

)
(1− ρi)ai−1ρdi−aii

ai
.

(5)

We determine rBi (d) by taking the tagged class-i server
to be queried and busy and applying the law of to-
tal probability using the following partition: the event
where all queried servers are busy and, for all j ∈ S, the
event where the fastest idle queried server is of class j.

We first address the case where all queried servers
are busy (given D = d), which occurs with probabil-

ity
(∏s

j=1 ρ
dj
j

)/
ρi; the division by ρi is due to the



fact that the tagged server is known to be busy. In this
case, the job is sent to some class-i server with probabil-
ity αi(0,d) and to the tagged server in particular with
probability αi(0,d)/di. Therefore, the “contribution”

to rBi (d) from this case is yi(d) ≡ αi(0,d)
diρi

(∏s
j=1 ρ

dj
j

)
.

We now address the cases where the class of the fastest
idle queried server, J ≡ min{j ∈ S : Aj > 0}, is class j,
for each j ∈ S. Conditioning on J , the “contribution”
to rBi (d) from these remaining cases is

rBi (d)− yi(d) =

s∑
j=1

αi(j,d)

di
· P(J = j|D = d, Ai < Di).

Note that we condition on Ai < Di because the tagged
server is known to be busy. Observe that for j ≤ i,
αi(j,d) = 0 because, in this case, the query contains an
idle server at least as fast as the tagged server, so the
job will not be sent to the tagged server. Hence we need
only consider j > i, in which case

P(J = j|D = d, Ai < Di) = bj(d)
(

1− ρdjj
)/

ρi.

Putting together all cases, we have:

rBi (d) =yi(d) +

s∑
j=i+1

bj(d)
(

1− ρdjj
)
αi(j,d)

diρi
(6)

Finally, we can simultaneously solve Equations (1,3,4,
5,6) for λI

i , λ
B
i , ρi, r

I
i (d), rBi (d). All such equations

and variables are parameterized by i ∈ S, with Equa-
tions (5,6) and variables rIi (d) and rBi (d) further param-
eterized by d ∈ D; recall that rIi (d) = rBi (d) = 0 when
i and d are such that di = 0. Once determined, the λI

i ,
λB
i , and ρi values can be used in conjunction with (2)

to determine the system’s overall mean response time.

4. DISCUSSION
This paper introduces a very general framework for

dispatching in the presence of heterogeneous servers,
extending existing work by considering multiple speed
classes and probabilistic querying. As a result of this
generality, response time evaluation and rule optimiza-
tion can become intractable as d and/or s grow large.
Specifically, the system of equations we solve to find

mean response time consists of s
(

3 + 2
(
s+d−2
d−1

))
nonlin-

ear equations in the same number of unknowns. More-
over, the space of possible querying rules forms a poly-
tope of dimensionality

(
s+d−1
d

)
− 1, while the space of

assignment rules forms a polytope of dimensionality

min{s,d}−1∑
k=1

(
s− 1

k

)
k +

s∑
j=1

min{j,d}−1∑
k=1

(
j − 1

k

)
k.

In practice, “power of d” policies often operate in
the low-d regime. In particular, d = 2 typically yields
the biggest marginal response time improvement at the
lowest communication cost. In heterogeneous settings,
however, deterministic querying rules can be too coarse
when d is low. In contrast, our probabilistic querying
offers much more flexibility; hence, we anticipate our

Figure 1: Percent increase in E [T ] of DQM and
IQM over GQM as a function of q1. Here s = d = 2
and job sizes are exponential with µ1/µ2 = 2.

policies will have the greatest advantage over determin-
istic querying in this regime. Fortuitously, this regime
also offers computational benefits for our policies: when
d = 2 the system (1,3,4,5,6) reduces to only 3s + 2s2

equations, while querying and assignment rules span
only s(s+ 1)/2− 1 and s2 − s dimensions, respectively.

Fig. 1 compares mean response time under three query-
ing rules, assuming s = d = 2 and µ1/µ2 = 2. Deter-
ministic Query Mix (DQM) uses p(d) = 1 for an opti-
mally chosen fixed query mix d ∈ D (this is equivalent
to one of the policies studied in [2]). Independent Query
Mix (IQM) chooses each of the d classes to be queried
independently (with replacement) according to an opti-
mally chosen distribution over S, i.e., p(·) is the pmf of
an optimally chosen multinomial distribution. General
Query Mix (GQM) uses the optimal choice of p(·). In
each case assignment is optimal given the querying rule.
GQM typically outperforms DQM substantially; surpris-
ingly, IQM often captures most of this benefit. Notably,
IQM reduces the space of querying rules to only s − 1
dimensions, rendering optimization more tractable.

The good performance and low computational cost
of independent querying suggest that the investigation
of other heuristics for pruning the policy space would
be a worthwhile endeavor. Additionally, we anticipate
that favoring shorter queues when deciding among busy
servers of the same class will allow for improved perfor-
mance, providing another avenue for exploration.

5. REFERENCES
[1] H. Chen and H.-Q. Ye. Asymptotic optimality of

balanced routing. Operations research,
60(1):163–179, 2012.

[2] K. Gardner, J. A. Jaleel, A. Wickeham, and
S. Doroudi. Scalable load balancing in the presence
of heterogeneous servers. Technical Report
arXiv:2006.13987, ArXiV, June 2020.

[3] K. Gardner and C. Stephens. Smart dispatching in
heterogeneous systems. ACM SIGMETRICS
Performance Evaluation Review, 47(2):12–14, 2019.

[4] M. Mitzenmacher. The power of two choices in
randomized load balancing. IEEE Transactions on
Parallel and Distributed Systems,
12(10):1094–1104, 2001.

[5] J. Selen, I. Adan, S. Kapodistria, and J. van
Leeuwaarden. Steady-state analysis of shortest
expected delay routing. Queueing Systems,
84(3-4):309–354, 2016.


