1 The game is afoot!

A scavenger hunt awaits you! You will need to write a program that performs certain calculations (on year numbers) in order to follow the clues. The program’s calculations are described below, instructions for writing the program are in Section 2.1 and the starting clue is then provided in Section 2.2. Note the map on the last page of this document—it divides the campus into a coordinate grid that will allow you to figure out where to go at each step.

The calculations: To perform this hunt, you will be finding clues in the form of 4-digit year numbers. These are (with the exception of the very first starting clue) years that you will find on buildings and statues on campus, so you can assume that they are between 1820 and 2020. Each year number will be an input to a program that performs an unnecessarily complicated calculation that yields coordinates. Using the attached map, you will go to those coordinates to find the next year-number clue.

Part of the calculation performed by this program depends on whether the given year is a *leap year*, as determined by these rules:

- If it is a multiple of 4, then it *is* a leap year, unless . . .
- If it is a multiple of 100, then it *is not* a leap year, unless . . .
- If it is a multiple of 400, then it *is* a leap year.

Therefore, 1924 was a leap year, but 1900 was not, yet 2000 was.

Once your program determines whether the given year is a leap year, it can then apply the correct one of the following two calculations to produce coordinates:

- If the year is a *leap year*, then:
 - The first coordinate is the absolute value of the difference between the first two digits and the last two digits of the number (e.g., if the year is 1908, the first two digits are “19” and the last two digits are “08”, so the first coordinate is $19 - 8 = 11$).
 - To obtain the second coordinate, first divide the year by 4. Then add 1 to the sum of the first and last digits of that result. Finally, divide by 2.
• If the year is not a leap year, then:

 – To obtain the first coordinate, first sum all the digits, and then:

 ∗ If that sum is a multiple of 7, then divide by 3 and add 1.
 ∗ If the sum is not a multiple of 7 and is greater than 10, then divide the sum by 3 and then add 7.
 ∗ If the sum is not a multiple of 7 and is not greater than 10, then add 7 to that sum.

 – To get the second coordinate, first check if the year number is divisible by its first two digits or the first digit is not divisible by the last digit. If either of those conditions holds, the second coordinate is one less than the result when the last 2 digits are divided by the first 2 digits. If neither condition holds, subtract the square of the first digit from the last two digits.

2 Your assignment

2.1 Getting started

In IntelliJ, create a new project called lab3, then create a new Java class called ScavengerHunt (exactly like that, including the capital H).

Write the ScavengerHunt program so that it reads a year number as input from the keyboard, performs the calculation described in Section 1, and prints out the coordinates that it calculates. When you run the program, your output should look something like:

Enter the year:
1908
11 6

If you check the map, you will find that those coordinates lead you to Charles Pratt Dormitory. As an additional test, the year 1933 should provide coordinates to Valentine Hall.

Some advice: I strongly recommend planning, writing, and testing your code one piece at a time. For example, write some code to determine if the year is a leap year before you do anything related to the coordinate calculations. Test your leap year code thoroughly and be sure that it works, then move on to the coordinates. Continue working one piece at a time: first deal with the first coordinate for the leap year case, then the second coordinate for the leap year case, etc. It will be much easier to find and correct errors if you’re dealing with only a small part of your program at a time.

2.2 Hunt!

To begin the hunt, enter the year 3232. That should yield coordinates on the map, and you should go to that place. At each location there is a sign with a date on it (if there are multiple dates, use the first 4-digit year that appears). There are five locations to find, including this first one. At the fifth and final location, go into the building and find and write down a fun fact. Come tell me
your fun fact during office hours and you’ll win a small prize!

You are not required to actually complete the hunt (after all, it’s February and running around campus in the cold may not seem all that palatable). However, you are responsible for ensuring that your code works properly in all cases, so make sure you test it thoroughly!

3 Submitting your work

Submit your ScavengerHunt.java code to the “Lab 3: Scavenger Hunt” assignment on Moodle.

This assignment is due on Thursday, February 20, 11:59 pm.