
INTRODUCTION TO COMPUTER SCIENCE I
LAB 2: ERRORS AND ARITHMETIC

Friday, February 7, 2020

1 Introduction
There are two parts to this lab. In the first part, you will get some practice debugging programs—
that is, fixing errors in your code. In the second part, you will write a program to do some geometric
computations.

To prepare you for the first part of the lab, you first need some additional information about what
actually happens when you click the green arrow in IntelliJ to run your program. There are several
steps that happen to translate the Java code that you write into a form that’s usable by the computer.
The first step is called compiling your code. This translated your Java code into an intermediate
form called bytecode. When you then run the program, another program called the Java Virtual
Machine is responsible for further translating your program’s bytecode into machine code, which
then runs on your computer. When you click the green arrow in IntelliJ, IntelliJ first compiles your
program and then, if the compilation is successful, runs it.

There are three types of errors that you can run into when programming:

1. Compiler errors are errors in the syntax of your code that can be identified when the com-
piler runs. If your code has a syntax error the compiler won’t be able to recognize your
program as valid Java code, and it will tell you so.

2. Runtime errors are errors that can’t be caught by the compiler, but will cause the program
to fail while it is running.

3. Logical errors are often the hardest to catch, and the most interesting. Your program might
compile successfully and run without crashing, but still not do what you intended it to do.
This means that you’ve made a logical mistake when planning out what your code should
do.

All of the errors you’ll see in this lab are compiler errors. We’ll get lots more practice with runtime
errors and logical errors as the course progresses!

2 Understanding Error Messages
Work with a partner. You’ll submit one set of files for both of you.

Start by opening up IntelliJ and creating a new project for this lab. Click File → New → Project,
then click through to create your project. The only time you won’t just click “next” is on the screen
that asks you for a project name; here, you can call your project lab2.

1

https://kgardner.people.amherst.edu/courses/s20/cosc111/
https://kgardner.people.amherst.edu/courses/s20/cosc111/assignments/lab2/lab2.pdf

Go to the course web page and click the link labeled “Error files.” This should take you to a page
that has links to 12 files whose names start with Err and end with .java. Each of these files has
at least one syntax error in it. Your job is to figure out what these errors are and to correct the errors.

One by one, do the following for each of these files:

1. Import the file to IntelliJ. To do this, first create a new Java class by right clicking the “src”
folder (if you don’t see that right away, click the little arrow next to “lab2” to expand), then
select “New” and then “Java class.” Give your class the name corresponding to the Err file
you’re importing, i.e., if you’re working on Err1.java, give your class the name Err1.

2. Open the corresponding Err file from the course web page, copy its contents, and paste into
your Err file in IntelliJ.

3. Click the green arrow to compile and run the program.

4. The program will not run, and you’ll see an error message in the “Messages” window at the
bottom of IntelliJ. Read the error message and see if you can figure out what it means. Then
try to correct the error in the program, and rerun the program to see if your correction was
successful.

5. After you have corrected the error, look at the explanation of the problem (see below) and
make sure you understand what is happening.

Err1.java

Inthisexample,thecompilergivesyoutheanswer.Itexpectsa‘;’andthecompilertellsyou
exactlywhereitshouldbe:thenumbersinparenthesisrightafterthewordErrortellyoutheline
numberandthecharacterwithinthelinewheretheerroroccurred.

Err2.java

Again,thecompilertellsyouexactlywhatiswrong.Itexpectsa‘)’,anditpointstotheplace.

Err3.java

Thistimethecompilerisreasonablyclearabouttheerror,butitisnotpointingtothelocation
oftheerror.Rather,itispointingtotheplacewheretheunclosedStringstarts.A“literal”isa
constantvalueofaparticulartype,asopposedtoavariable.

Err4.java

Thiserrormessageisperhapsnotasclear.Whyisitcomplainingabouta“possible”problem?It
turnsoutthatitisonlyapossibleproblembecausethedoublemightcontainanintegervalue,
inwhichcasewearefine.Butthedoublemightcontainavaluethatisnotaninteger,inwhich
caseitcannotbeassignedtoanintvariable.Thereareseveralpossiblewaystofixthis,including
declaringitobeadoubleordeclaringjtobeanint.Itdependsonwhatyoureallyintended.

2

Err5.java

Inthiscasethecompilerisveryclearbothaboutthenatureoftheproblemandthelocation.It
cannotfindthesymboljbecausenovariablecalledjwaseverdeclared.

Err6.java

Again,thisisstraightforward.Thecompilertellsyouthatavariableialreadyhasbeendefined.

Err7.java

Herethecompilerseemstobehedging:ittellsusthatvariablei“might”nothavebeeninitialized.
Whatjavacmeansisthatitisnotsurethatihasbeeninitialized(inthiscaseitisclearfromlooking
atthecodethatihasnotbeeninitialized;nextweekwewillseesomeexamplesofprogramsin
whichitwillbelessclear).

Err8.java

Thiserrormessage(class,interface,orenumexpected)islesshelpful.Thelocationiscorrect,but
themessageisoffbase.Thecompilerisconfusedbytheextraneousword“Public”,whichis
doesnotrecognizeasamisspellingof“public”.Javaiscasesensitive!

Err9.java

Thismayseemlikeanoddlyphrasederrormessage(classErr9aispublic,shouldbedeclaredina
filenamedErr9a.java).TherealerroristhatthenameofourfileisErr9.java,andthenameofthe
classcontainedwithinthisfilemustalsobeErr9(alternatively,thefilenameandtheclassname
couldbeErr9a.javaandErr9arespectively).Thereasonforthephrasingoftheerrormessageis
thatitispossibletohaveanon-publicclass,forwhichtherearedifferentrules.Youdonotneed
toknowaboutthisyet,butyoushouldbeawarethatitmaybedifficulttounderstandsomeofthe
errormessagesatyourcurrentlevelofknowledge.

Err10.java

Weseetwoerrors,solet’shandlethefirstonefirst.Thisisalittlemisleadingbecauseitpoints
totherightplace,buthasthewrongexpectationaboutwhatitwantstosee.Whatismissingisa
‘{’,nota‘;’.Onceyouhavecorrectedthefirsterror,theothererrormessageshoulddisappear:
theadditionalerrorwasnotreal,andonlyappearedbecausethefirsterrorcausedthecompilerto
beconfusedabouthowtoreadtherestoftheprogram.Advice:whenindoubt,fixthefirsterror,
recompile,andseewhathappens.

Err11.java

Indeed,‘)’isanillegalstartofanexpression,buttheerrormessageisn’tparticularlyhelpful.
Instead,theproblemisthatjavacexpectsanexpressionafterthe‘+’,butinsteadthereisa‘)’.

3

Err12.java

Thefirsterrormessageistechnicallycorrect;“System.out.println{"hello");”isnota
statement,butthecompilerdoesn’ttellyouthattheproblemisthatthereisa‘{’insteadofa‘(’.
Oncewefixthiserror,thecompilercomesupwithanentirelydifferenterror.Thisiscommon.
Youfixanerrorandthecompilercanunderstandtheprogrambetter,soitfindsanothererror.

When you are done, put both of your names in a comment at the top of Err1.java and save the
file. If you do not put your name in the file and you are working from your partner’s account, I will
have no way of knowing that you have completed this part of the assignment.

Submit all of your java files to the “Lab 2A: Errors” assignment on Moodle. You should only make
one submission for both you and your partner.

3 Geometry Computations
Work on your own for this part of the assignment.

Create another Java class in your lab2 project, and call this one Lab2B. Copy the Lab2B code from
the course web page into your Lab2B file in IntelliJ.

Compile and run the Lab2B program using the green arrow. When you run the program, it should
prompt you to enter the base and height of a rectangle, and then it should print out the area.

You may notice that if you type in something that is not a number when the program asks you to
enter the base or the height, the program will stop running and an error message will print. This
is an example of a runtime error: the compiler didn’t know that the user wasn’t going to type in a
number, but when the program ran and the user didn’t behave as expected, the program couldn’t
continue running. We will see later how to handle this; for now you can assume that your user is
well behaved and will enter sensible numbers.

Your job is to calculate various geometric properties of different shapes. The table on the next page
lists the shapes and the values you should compute, as well as the data you will need to read from
the keyboard. For each shape, you should read from the keyboard the values listed in the “Input”
column, compute all of the values listed in the “Value” column using the given formulas, and then
print the results. For example, the output for the right triangle might look something like:

Please enter the length of the base:
3
Please enter the height:
4
Right triangle area is: 6.0
Right triangle hypotenuse is: 5.0
Right triangle perimeter is: 12.0

Your program should read in new input values for each shape (i.e., the user should be able to enter

4

one base and height for the rectangle, then a different base and height for the triangle). So in the
end, your program should read in 9 different values from the keyboard (one for each of the quan-
tities in the “input” column) and print out 11 different results (one for each of the quantities in the
“value” column).

Shape Input Value Formula

Rectangle
Base (b)
Height (h)

Area (A) A = bh
Perimeter (P) P = 2b+ 2h

Triangle
Base (b)

Area (A) A = bh
2Height (h)

Right Triangle
Base (b)
Height (h)

Area (A) A = bh
2

Hypotenuse (c) c =
√
b2 + h2 *

Perimeter (P) P = b+ h+ c

Circle Radius (r)
Area (A) A = πr2 **
Circumference (C) C = 2πr

Regular polygon
sides (n)
Side length (l)

Perimeter (P) P = nl
Apothem (a) *** a = l

2 tan(π/n)

Area (A) A = aP
2

*Note: you can use Math.sqrt(x) to compute the square root of a variable x.
**Note: you can use Math.PI to get the value of π.
***Note: the apothem is the distance from the center of any side of a regular polygon to the
polygon’s midpoint.
****Note: you can use Math.tan(x) to compute the tangent of a variable x.

When you are done, submit your program to the “Lab 2B: Geometry” assignment on Moodle.

This assignment is due on Thursday, February 13, 11:59 pm.

5

	Introduction
	Understanding Error Messages
	Geometry Computations

