
Name:

Data Structures

Spring 2018

Midterm 2

This is a 50-minute, closed-notes exam. Please put away all notes,
phones, laptops, etc. There are seven pages and four problems.
Good luck!

Problem Score

1 /25

2 /25

3 /30

4 /15

Total /100

You get 5 points for writing your name at the top of this page.

You do not need to show any work beyond your final answer, but you
are welcome to do so if you feel it will help me understand your thought
process.

1



1. Hashing. Suppose you have a hash table of size m = 7 where the keys are 2-digit
integers and the hash function is h(k) = (2k1 + k2)%m, where k1 is the first digit of
the key and k2 is the second digit of the key. For example, if the key is k = 34, then
k1 = 3, k2 = 4, and h(k) = (2 · 3 + 4)%7 = 3. Draw the hash table that results when
the following keys are added (in this order) to an initially empty table: 39, 56, 94,
84, 73, and using each of the following collision resolution techniques.

(a) Chaining

(b) Linear probing

(c) Double hashing, where the second hash function is h2(k) = (k1 + k2 − 1)%m

2



2. Red-Black Trees.
(a) Can the following binary search tree be colored to make it a red-black tree? If so,
shade in the black nodes to make this a valid red-black tree. If not, explain what is
wrong with the tree structurally.

(b) Can the following binary search tree be colored to make it a red-black tree? If
so, shade in the black nodes to make this a valid red-black tree. If not, explain what
is wrong with the tree structurally.

3



(c) Draw the red-black tree that results after each insertion when inserting the fol-
lowing sequence of keys into an initially empty tree: 11, 5, 2, 9. Your solution should
include four drawings of trees, one after inserting each element. Clearly indicate the
color of each node at every step.

(d) Is it possible to have a red node with one internal child and one leaf child? If so,
draw a red-black tree that includes this structure. If not, explain why not.

4



3. I’ve implemented my Binary Search Tree using two classes, as follows:

public class BST {

Node root;

public void add(String key) {

...

}

public boolean lookup(String key) {

...

}

public String remove(String key) {

...

}

...

}

public class Node {

String data;

Node left;

Node right;

Node parent;

...

}

Where ... indicates that I have (or may have) omitted some code (I don’t want to
give away too much of your homework assignment!).

Suppose we want to join two BSTs. Specifically, suppose we start with two BSTs,
T1 and T2, where we know that all of the keys in T1 are smaller than all of the keys
in T2. We also know that T1 contains n nodes, T2 contains m nodes, and n < m.

(a) Add a method called join to the BST class that, when given a BST as an input
parameter, returns a new BST that is the result of joining T1 and T2. That is, your
method should have the header:

public BST join(BST T2)

For example, if T1 contains the keys 1,3,6 and T2 contains the keys 8,9,13,14, then
the call T1.join(T2) should return a single tree containing keys 1,3,6,8,9,13,14.

Your goal should be to write a join method that is as efficient as possible. That is,
it should have the smallest big-O runtime in n and m that you can come up with.
You will get partial credit if your solution is correct, but does not have the lowest
possible big-O runtime. You will also get partial credit if you give a clear explanation
of what your method would do, but do not provide the actual code.

There is space on the next page for you to write your solution.

5



public BST join(BST T2) {

}

(b) In terms of n and m, what is the average-case big-O runtime of your join method?

6



4. Fill in the table of runtimes with the best possible big-O bound for each operation:

Unbalanced BST Red-black tree Hash table using chaining*
Worst case Avg. case Worst case Worst case Avg. case

add

lookup

remove

* You can assume that you are using a “good” hash function and that the size of the
table is O(n).

7


