Draw the binary search tree that results from the following sequence of adds:
20, 12, 16, 32, 27, 7, 37

How many steps does \texttt{lookup(7)} take (i.e., how many nodes are accessed)?

How many steps does \texttt{lookup(16)} take?

Generalize: In terms of \(n\) (the number of items in the tree), how long does \texttt{lookup} take in the worst case for this tree?
Draw the binary search tree that results from the following sequence of adds:
37, 32, 27, 20, 16, 12, 7

How many steps does $\text{lookup}(7)$ take (i.e., how many nodes are accessed)?

How many steps does $\text{lookup}(16)$ take?

Generalize: In terms of n (the number of items in the tree), how long does lookup take in the worst case for this tree?
Binary Search Tree Runtime Analysis
Putting it Together

1. What’s the worst-case runtime for lookup that *any* tree and input could have?

2. What’s the best-case runtime for lookup that *any* tree and input could have?

3. Suppose you’re given a particular tree. What can you say about the worst-case runtime for lookup for *that particular* tree? Can you give a better bound than your result from part (1) above?

4. What’s the shortest possible height, h, for a tree with n nodes? What would you expect the height of the tree to be, on average? What does this tell you about the average runtime for lookup?