Reminder regarding intellectual responsibility: This is an individual assignment, and the work you submit should be your own. Do not look at anyone else’s code, and do not show anyone your code (except for me and the course TAs).

1 Introduction

We have talked a lot in class about how to analyze the asymptotic performance of our data structures. Typically we’ve been interested in a big-O analysis of the worst case performance: we want an upper bound (that’s the big-O part) on how long it can take our operations to run on any input (that’s the worst case part). Your goal in this assignment is to explore the relationship between our asymptotic analysis and the actual, empirical runtimes of our data structure operations.

This assignment comes in a very long document with lots of information about the Java constructs we are using. Here is a summary of what your actual tasks are in this assignment:

1. Implement a heap-based priority queue (Section 2).
2. Run some timing experiments to empirically measure how long different operations take (Section 3).
3. Write up a short report on your findings (Section 4).

Your experiments will take a long time to run, so I strongly suggest you start this assignment early so that you get your heap implementation working with sufficient time remaining to run the experiments.

1.1 Setup

Begin by downloading some files:

$ wget -nv -i http://tinyurl.com/cosc211hw4

You should now have three Java files:

- PriorityQueue.java is an interface that specifies the methods that must be contained in any class that wants to call itself a priority queue (see Section 1.2).
- PQSorted.java and PQUnsorted.java give two different implementations of a priority queue. Both of these classes are complete (you should not change the code); you will add a heap implementation (see Section 2).
1.2 Tutorial on Java Interfaces

Suppose we are writing a program to display web pages. Each web page consists of a large number of different components, including images, text, links to other pages, ads, etc., each of which might be specified in its own class. These different components all need to be formatted to show up properly on the page, and the way in which we do the formatting depends on what the component is (e.g., displaying text might involve looking up a font, whereas displaying an image might involve scaling the image to match the size screen on which it’s being displayed). One way of handling this would be for each class to provide its own set of methods that manage display functions. Maybe the Text class has a printToScreen() method that simply prints out whatever text it is storing. The Image class, on the other hand, might require different methods renderForChrome(), renderForMobile(), etc., because what needs to be done to display an image might be platform-dependent. In order to write our program that displays all of the components of a web page, we need to keep track of what particular methods exist to do the displaying for each type of component. Life would be much easier if we could just call something like theComponent.display() and have the component’s class figure out what needs to be done to handle its particular version of displaying!

The Java language provides a construct that captures this idea: the interface. The purpose of an interface is to specify a desired set of functions that a class might provide. For example, we might have an interface WebDisplayable that tells us that any object that claims it can be displayed on a web site must provide methods to display the object in Chrome, in Safari, and on a mobile device. The interface itself does not provide any details about how to do the displaying; instead it tells us what methods the object must implement.

This is very similar to what we’ve been doing when we have defined a new abstract data type (ADT). The definition of the ADT has involved a list of operations we want our ADT to support. For example, we said that a Stack is a list that must allow us to push a new item onto the top of the list, pop an item off the top of the list, check how many elements are stored in the list, and check if the list is empty. The ADT is defined by its desired behavior; as we’ve seen, there are generally many ways to implement the data structure to produce the desired behavior. Similarly, an interface specifies a set of desired behaviors for a class; there may be many classes that implement the same interface, each of which provides its own own way of achieving the desired behaviors.

Creating interfaces

An interface is contained in a .java file, just like a class. It looks something like this:

```java
public interface WebDisplayable {
    public void displayChrome();
    public void displaySafari();
    public void displayMobile(String s, int t);
}
```
The first line in the file looks like a class declaration, except that it has the word `interface` instead of the word `class`. The rest of the file consists of a list of method headers. Each line ends with a semicolon, and none of the methods are actually implemented here. At this point, all we are doing is listing the desired functions of any class that implements `WebDisplayable`. In this case, our `WebDisplayable` interface says that any class that is `WebDisplayable` must include three specific methods. These methods can have input parameters (as `displayMobile()` does in our example) and they can have return types.

In our interface, we do not specify how to make these functions happen: there are no method bodies. This is left to the classes that `implement` our interface.

Implementing interfaces

When we say that a class `implements` an interface, we are making a promise that the class will provide an implementation of all of the methods specified in the interface. For example, we might have a class that begins with the following line:

```
public class Jpeg implements WebDisplayable {
```

As usual, we have the class declaration `public class Jpeg`. This is followed by the words `implements WebDisplayable`. By including these words, we are asserting that `Jpeg` will contain methods with headers that exactly match the headers listed in the `WebDisplayable` interface.

`Jpeg` can also contain methods that are not listed in `WebDisplayable`. We might, for example, want `Jpeg` to include a method `convertToGif()` that converts an image file with the extension `.jpeg` to one with the extension `.gif`. This method exists independently from the `WebDisplayable` interface.

A class can implement multiple interfaces at the same time. For example, we might want our `Jpeg` class to also implement an interface `Compressable` that includes a `compress()` method. We would then declare our `Jpeg` class as follows:

```
public class Jpeg implements WebDisplayable, Compressable {
```

This class declaration is now a promise that `Jpeg` will include methods with headers that match all the methods listed in the `WebDisplayable` interface, and all the methods listed in the `Compressable` interface.

Using interfaces

The advantage of using interfaces is that they allow us to work more easily with multiple different classes that are capable of the same behaviors. In our web site display example, we might imagine that we start off with a set of different components that we want to display. The class corresponding to each of these components (Image, Text, Ad, etc.) should implement the `WebDisplayable` interface, and it would be nice if we could somehow deal with a list of objects that are `WebDisplayable`, without having to worry about what specific type each object is. For example, we might like to write the following method:

```
public void showWebsiteChrome(WebDisplayable[] components) {
    for(int i = 0; i < components.length; i++) {
        components[i].displayChrome();
    }
}

The interesting thing about this method is that the input parameter’s type is an `interface`, not a class. What this says is that all of the objects in the input array will be instances of some class that implements `WebDisplayable`. This is nice because it allows us a little flexibility (we can store multiple different types of objects in the array) while also providing some restrictions (the only types of objects we can store in the array are those that are `WebDisplayable`).

We can do this. A variable can be *declared* as an instance of an interface, rather than an instance of a specific class. For example, we can say:

```java
WebDisplayable myComponent;
```

This says that `myComponent` is going to be some sort of object that is `WebDisplayable`. However, because the `WebDisplayable` interface doesn’t contain any method bodies, when we *initialize* the variable we must use a specific class that implements `WebDisplayable`. For example, we could say:

```java
myComponent = new Image();
```

since the `Image` class implements `WebDisplayable`. If we then issue the method call `myComponent.displayChrome()`, we will call the particular version of the `displayChrome()` method that lives in the `Image` class, because `Image` is the instantiated type of `myComponent`.

**Interfaces in this assignment**

The `PriorityQueue.java` file that you downloaded is an interface. It lists four methods that any class claiming to be a priority queue must provide: `add(Integer toAdd)`, `remove()`, `size()`, and `isEmpty()`. You will see that the `PQSorted` and `PQUnsorted` classes that I have provided both implement the `PriorityQueue` interface, and both do indeed provide implementations of the methods specified in the interface. The `PQHeap` class, which you will write, should also implement `PriorityQueue`.

In the `measureTimes()` method in `Tester.java`, you will see the line:

```java
PriorityQueue queue = new PQSorted();
```

The variable `queue` is declared as a `PriorityQueue`, and it is initialized as a `PQSorted`. The declaration as type `PriorityQueue` means that when `queue` is initialized, it must be initialized to an instance of `PQSorted` or `PQUnsorted` (or, once you write the class, `PQHeap`). When you want to test each different type of priority queue, you can simply change the initialization on the right-hand side.
2 Task 1: Heap Implementation

Your first job is to implement, in a file called PQHeap.java, a priority queue using the array-based heap that we discussed in class. Your PQHeap should implement the PriorityQueue interface, and you will need to fill in the contents of each method specified in the PriorityQueue interface. You also likely will want to write extra supporting methods, like siftUp and siftDown.

Make sure you test your code thoroughly before you move on to the next part of the assignment. You probably will want to write extra code in some other class to test your heap and convince yourself that your add and remove methods are working properly. If you have errors in your heap code that may affect the timing results that you obtain in the second part of this assignment. Furthermore, any submitted code that does not compile will not receive credit.

3 Task 2: Experiments

Your goal in this part of the assignment is to empirically measure the performance of each of the three priority queue implementations. Specifically, you will time how long the add and remove methods take to run on a range of different values of $n$ (as usual, $n$ is the number of items in our priority queue). At the end of your experiments, you’ll plot the runtime of add and remove as a function of $n$ under the three priority queue implementations so that you can compare their relative performance. Because all three implementations use an underlying array and all resize the array in the same way when it runs out of space, we won’t include the time to resize in our measurements. Here’s a sequence of steps you might follow to run your experiments:

- Choose the largest value of $n$ for which you want to measure performance. Call this $n_{\text{max}}$
- Create a new (initially empty) priority queue
- Add $n_{\text{max}}$ randomly generated elements to the priority queue (this step happens once at the beginning, without timing measurements, so that all of your resizes happen here and you don’t measure them later on)
- Repeat:
  - Remove all elements from the priority queue, timing how long each call to remove takes (you probably won’t want to measure this for all values of $n$ between 0 and $n_{\text{max}}$, but you should measure enough to get a clear sense of what the function looks like).
  - Add $n_{\text{max}}$ randomly generated elements to the priority queue, timing how long each call to add takes (again, you probably won’t want to measure all values of $n$)
- Average your results over several repetitions of the same experiment

A couple notes:

Q: What’s the point of the replications?
A: The timing data is very noisy: the same operation can take a different amount of time depending
on lots of factors that have little or nothing to do with what we’re trying to measure. For ex-
ample, in the sorted array implementation, our add method will have a different runtime depending
on if the element we’re adding happens to be larger than everything that’s already in our priority
queue, smaller than everything that’s already in our priority queue, or somewhere in between. If
Java’s garbage collector happens to run while we’re in the middle of timing a method, the time for
that method will be artificially inflated. If lots of users are running code on remus/romulus
at the same time, that can slow things down because you’re all competing for resources. And so
on. Running many replications of the same experiment reduces this noise because the chances that
an unusual bad event happens every time are reasonably low. However, it is nearly impossible to
completely eliminate noise. Don’t worry if you see outliers in your results: this is to be expected!
You’ll want to run enough replications to reduce the noise a bit, but not so many that it takes forever
for your experiments to run.

Q: What should I choose for nmax?
A: Your goal is to get a sense of how well the asymptotic analysis matches up to the empirical
results. Asymptotic analysis deals with very large values of n, so you will need your ns to get
high enough to identify a clear trend. On the other hand, as n gets large, it will take a long time
to run your experiments. You should be patient (it’s reasonable to let your experiment run for, say,
an hour per implementation) but not too patient (your experiments shouldn’t be running for days).
You might find that different choices for nmax are appropriate for different implementations. To
give you a rough sense of what kinds of ns are reasonable, I ran my PQSorted experiments with
values of n up to around 500000.

Q: How should I actually time the methods?
A: You can use Java’s System.nanoTime() method to record the current system time before
and after your method call. For example, you might write something like:

```java
long startTime;
long endTime;
...
startTime = System.nanoTime();
pq.add(someValue);
endTime = System.nanoTime();
```

After running this code, the amount of time that has passed while running your add method is
diff = endTime - startTime. The variable type long is a Java type that stores an integer value
between \(-2^{63}\) and \(2^{63} - 1\). It’s like an int, but it can store bigger (and smaller) numbers.

4 Task 3: Write up your results

There is a short written component to this assignment. The purpose of this component is to get
you to reflect on the results of your experiments and think about how your empirical results relate
to what we learn from the asymptotic analysis of our data structures. Specifically, your tasks are
as follows:
1. Graph the results you obtained in your experiments. You should have a separate graph for each implementation (sorted array, unsorted array, and heap). The $x$-axis should be $n$ (the number of elements in the priority queue) and the $y$-axis should be the average time per operation in milliseconds. Each graph should include two data sets, one for the add operations and one for the remove operations.

2. Write a short (~1-2 paragraph) discussion of your observations. Your response should address at least the following questions:

   - In general, is the asymptotic analysis a good predictor of the shape of the empirical runtime results?
   - Does the asymptotic analysis give you the full picture of the empirical runtimes? What do you learn from the graphs that you don’t learn from the asymptotic analysis? What do you learn from the asymptotic analysis without having to run any experiments?

Feel free to note any other interesting observations that you made about the results!

5 Submit your work

Submit your code and writeup using either the submission web site or (from remus/romulus) the cssubmit command:

```bash
cssubmit *.java writeup.txt
```

and use the numeric menu to select the correct course and assignment. Please make sure you submit ALL of your files in ONE submission.

This assignment is due on Friday, March 8, 5:00pm.