
Cole Stephens
Data Structures - Dijkstra’s Algorithm, Comparator and implements Comparable
handout.

Dijkstra’s Algorithm

Pseudocode

for each vertex v in graph : //initialization
 v.dist = +infinity;
 v.parent = null;

source.dist = 0
insert all vertices (or, nodes) into priority queue PQ, ordering vertices based on distance from
the source (see comparator section)

while !PQ.isEmpty():
 u = PQ.poll();

//if we wanted to remember the distances to each vertex, we would record u’s distance
here: upon removal, the shortest path to u has been found
for each of u’s neighbors, v, *which are in the PQ*: //do not consider neighbors which

have already been removed
 pathThroughU = u.dist + edgeCostFromUToV
 if pathThroughU < v.dist
 v.dist = pathThroughU
 v.parent = u

Example graph (try this on your own)

Class Node implements Comparable<Node> {

 public int dist;

/* return -1 if this Node’s distance is less than other Node’s
distance

 return 0 if the distances are equal
return 1 if this Node’s distance is greater than other Node’s
distance

 */
 public int compareTo(Node other) {

return Integer.valueOf(dist).compareTo(Integer.valueOf(
other.dist);

}

}
//This way is useful if you plan on calling Arrays.sort or any other method that relies on “natural
ordering” as you will not need to do any additional work after implementing Comparable

Class NodeComparator implements Comparator<Node> {

/* Returns any positive value if a > b, 0 if a == b, and returns
any negative value if b > a */

 public static int compare (Node a, Node b) {
 return a.dist - b.dist

}

}
PriorityQueue<Node> orderedNodes = new PriorityQueue(new
NodeComparator());

//To construct the PriorityQueue in a way that it compares based on what you have written in
your Comparator, pass in the Comparator. This way is useful for if you want to compare the
same objects in different ways and want to use multiple different comparison methods. I.e., to
compare Cat objects based on size, loudness of meow, or color, you could write three different
Comparators, as it would be much harder to implement three different Cat classes with
different compareTo(Cat other) methods.

