Binary Search Tree Runtime Analysis
Version 1

Draw the binary search tree that results from the following sequence of adds:
20, 12, 16, 32, 27, 7, 37

How many steps does \texttt{lookup(27)} take (i.e., how many nodes are accessed)?

How many steps does \texttt{lookup(37)} take?

Generalize: In terms of \(n \) (the number of items in the tree), how long does \texttt{lookup} take in the worst case for this tree?
Draw the binary search tree that results from the following sequence of adds: 37, 32, 27, 20, 16, 12, 7

How many steps does \texttt{lookup(27)} take (i.e., how many nodes are accessed)?

How many steps does \texttt{lookup(37)} take?

Generalize: In terms of \(n \) (the number of items in the tree), how long does \texttt{lookup} take in the worst case for this tree?
Binary Search Tree Runtime Analysis
Putting it Together

1. What’s the worst-case runtime for lookup for any tree?

2. What’s the best-case runtime for lookup for any tree?

3. Suppose you’re given a particular tree. What can you say about the worst-case runtime for lookup for that particular tree? Can you give a better bound than your result from part (1) above?

4. What’s the shortest possible height, \(h \), for a tree with \(n \) nodes? What would you expect the height of the tree to be, on average? What does this tell you about the average runtime for lookup?