
COSC-211: DATA STRUCTURES

HW9: MAZE SOLVING

Due Thursday, April 19, 11:59pm

Reminder regarding intellectual responsibility: This is an individual assignment, and the work
you submit should be your own. Do not look at anyone else’s code, and do not show anyone your
code (except for me and the course TAs).

1 Introduction
In this assignment, you will write a program to solve mazes in the style and format of the mazes
that you generated in HW8. In doing so, you will implement a graph data structure using one of
the representations we’ve discussed in class, and you will implement either Breadth-First Search or
Depth-First Search. The goals of this assignment are for you to think about which representation
and search process best fit the needs of the problem you are solving, and, as usual, for you to get
more practice and experience implementing data structures (and debugging!).

1.1 Setup
Begin by downloading some starter code:

wget -nv -i https://goo.gl/H8GZXn

You should now have three Java files:

• Node.java: represents a square in the maze grid (this is what we called a Cell in HW8;
I’ve renamed it Node for this assignment because it contains different variables and methods
than Cell.java from HW8). Each node contains:

– An index that uniquely identifies it; in a graph with n nodes the nodes will have
indices 0 through (n− 1). The nodes in a maze are organized in a grid and are indexed
row by row. For example, in a 3× 3 grid there are 9 nodes indexed as follows:

0 1 2
3 4 5
6 7 8

– Two booleans, visited and inSolution, which are meant to help you keep track
of which nodes you have searched so far, and which nodes end up in the solution path
from entrance to exit.

– A method called toString() that converts a Node to a String, where the value
of the String depends on whether the Node has been visited and whether it is
marked as being part of the solution. This is used by the printMaze() method
in MazeSolver (see below).

– A constructor that sets the index of the node.

1

https://kgardner.people.amherst.edu/courses/s18/cosc211/
https://kgardner.people.amherst.edu/courses/s18/cosc211/assignments/hw9/hw9.pdf


• Graph.java: some very basic starter code to implement a graph. You will fill in most
of this as part of the assignment. Right now all it contains is an array of Nodes and a
constructor that initializes each Node in this array with an index corresponding to the array
position. There is also a addEdge() method that doesn’t do anything; this is included
so that the code compiles as is, and you will need to make the method do something more
meaningful.

• MazeSolver.java: some starter code to help you solve mazes. Specifically, the code
that I have given you does the following:

1. Calls the parse()method to read the contents of a file* and extract information about
the size of the maze and the walls in the maze.

2. Calls the buildGraph() method to generate a graph based on the maze information
extracted by parse(). This method calls the addEdge() method in Graph.

3. Calls the printMaze() method to print the maze. Right now if you compile and run
the program an empty maze will print that exactly matches the contents of your input
file. If you update the booleans in each node as you’re solving the maze, it should print
out something more interesting when you’re done solving.

*Here the name of the file containing the maze is an input parameter to the program. For
example, if you run the program using the command java MazeSolver maze.txt,
this will solve the maze contained in maze.txt. If you don’t specify an input parameter,
the program will not run.

Now run the following command:

wget -nv -i https://goo.gl/L3PnGr

This will download several mazes of different sizes on which you can test your solving program. If
you submitted HW8 on time, one of these mazes should look familiar to you—these are the mazes
you generated in HW8!

2 Your Tasks
Your job in this assignment is to complete the program so that it solves mazes. Specifically, you
will do the following:

1. Finish implementing the Graph class.

(a) The first step is to choose a representation: adjacency matrix or adjacency list. In a
comment at the top of MazeSolver.java, answer the question: Which represen-
tation do you think is more appropriate for this problem? Why?

(b) Fill in the addEdge() method. The inputs to this method are two ints, where each
input represents an index of a Node. For example, calling addEdge(3,6) should
add an edge between the node with index 3 and the node with index 6.

2



(c) You will need to make other changes to Graph and/or Node to complete your imple-
mentation. What changes you make will depend on which representation you chose to
use. You are free to add other fields and methods to Graph and Node (for example,
you likely will want to include an edgeExists() method), and you can even add
other classes if you wish.

2. In MazeSolver, write a method called solve() that takes a Graph as input and re-
turns an array of Nodes containing, in order, the Nodes included on the path from the
maze entrance to the exit. Your solve() method should use either Breadth-First Search
or Depth-First Search (hint: if you need a stack or a queue, you have one from way back in
HW2!).

(a) In a comment at the top of MazeSolver.java, answer the question: Which
search algorithm did you choose, and why?

3 Submit your work
Make sure you test your code thoroughly before submitting it. Code that does not compile will
not receive credit.

Submit all of your Java files using either the submission web site or (from remus/romulus) the
command line:

$ cssubmit *.java

This assignment is due on Thursday, April 19, 11:59pm.

3


	Introduction
	Setup

	Your Tasks
	Submit your work

