
COSC-211: DATA STRUCTURES

HW7: BINARY SEARCH TREES

Due Thursday, April 5, 11:59pm

Reminder regarding intellectual responsibility: This is an individual assignment, and the work
you submit should be your own. Do not look at anyone else’s code, and do not show anyone your
code (except for me and the course TAs).

1 The Assignment
In this assignment, you will write a binary search tree from scratch. Your tree should hold keys
of type String (with no extra associated values). This is an unbalanced binary search tree—that
is, it should obey the standard BST rules, but do not include any of the red-black tree balancing
rules. You can use the compareTo method in the String class to determine which of two keys
is larger.

Your tree should be in a class called BinarySearchTree.java (exactly like that, capitaliza-
tion and all). In this file, you should include the following methods:

1. A method called add that takes a String key as input and inserts it into the appropriate
position in your tree. If key already appears in the tree, the method should do nothing.

2. A method called remove that takes a String key as input and removes key from the
tree. The method should return key if it successfully removed key from the tree, and it
should return null if it did not remove key from the tree (i.e., if key was not in the tree).

3. A method called lookup that takes a String key as input and determines whether key
appears in the tree. The method should return true if the tree contains key and false
otherwise.

4. A method called inOrderTraverse that, when called on the root, prints all keys in the
tree in increasing order. This method should have no input parameters and should not return
anything.

Your methods must have exactly the names, input parameters, and return types specified above.

You might decide that you want to write additional methods, include fields, write additional classes,
or any other number of things. This is all fine, provided that the four methods specified above do
what they are supposed to do. Any methods or fields that you add to the BinarySearchTree
class should be private.

You likely will want to write some code to test your binary search tree before you submit it. This
code should be in a separate Java file; do not include test code in your BinarySearchTree.java.
Some things to think about when you are testing your code: What happens when you try to call
one of your methods on an empty tree? Does add work properly when you try to insert a key that

1

https://kgardner.people.amherst.edu/courses/s18/cosc211/
https://kgardner.people.amherst.edu/courses/s18/cosc211/assignments/hw7/hw7.pdf


is already in the tree? Does removing the root work properly? This is not a comprehensive list of
cases to check; you are responsible for making sure that you tree always works as described above.

2 Submit your work
Make sure you test your code thoroughly before submitting it. Code that does not compile will
not receive credit.

Submit all of your Java files that I will need to use your tree (you do not need to submit ex-
tra code that you’ve written to test your tree) using either the submission web site or (from
remus/romulus) the command line:

$ cssubmit *.java

This assignment is due on Thursday, April 5, 11:59pm.

2


	The Assignment
	Submit your work

