COSC-211: DATA STRUCTURES
HW4: PRIORITY QUEUES
Due Friday, March 2, 9:00am

Reminder regarding intellectual responsibility: This is an individual assignment, and the work
you submit should be your own. Do not look at anyone else’s code, and do not show anyone your
code (except for me and the course TAs).

1 Introduction

We have talked a lot in class about how to analyze the asymptotic performance of our data struc-
tures. Typically we’ve been interested in a big-O analysis of the worst case performance: we want
an upper bound (that’s the big-O part) on how long it can take our operations to run on any input
(that’s the worst case part). Your goal in this assignment is to explore the relationship between our
asymptotic analysis and the actual, empirical runtimes of our data structure operations.

This assignment comes in a very long document with lots of information about the Java constructs
we are using and the code that I’ve provided for the experiments. Here is a summary of what your
actual tasks are in this assignment:

1. Implement a heap-based priority queue (Section [2)).

2. Run some timing experiments to empirically measure how long different operations take
(Section [3.2)).
3. Write up a short report on your findings (Section [3.3).

Your experiments will take a long time to run, so I strongly suggest you start this assignment
early so that you get your heap implementation working with sufficient time remaining to run the
experiments.

1.1 Setup

Begin by downloading some files:
$ wget -nv -i https://goo.gl/6ywtir
You should now have five Java files:
e PriorityQueue. java is an interface that specifies the methods that must be contained

in any class that wants to call itself a priority queue (see Section[I.2).

e POSorted. java, PQUnsorted. java, and PQHeap . java give three different imple-
mentations of a priority queue. PQSorted. java and PQUnsorted. java are complete
(you should not change any of the code in these classes), and you will fill in PQHeap . java
(see Section [2)).

e Tester. java provides some code that you will use to run your timing experiments (see
Section [3).


https://kgardner.people.amherst.edu/courses/s18/cosc211/
https://kgardner.people.amherst.edu/courses/s18/cosc211/hw4/hw4.pdf

1.2 Tutorial on Java Interfaces

Suppose we are writing a program to display web pages. Each web page consists of a large num-
ber of different components, including images, text, links to other pages, ads, etc., each of which
might be specified in its own class. These different components all need to be formatted to show
up properly on the page, and the way in which we do the formatting depends on what the com-
ponent is (e.g., displaying text might involve looking up a font, whereas displaying an image
might involve scaling the image to match the size screen on which it’s being displayed). One
way of handling this would be for each class to provide its own set of methods that manage dis-
play functions. Maybe the Text class has a printToScreen () method that simply prints out
whatever text it is storing. The Image class, on the other hand, might require different methods
renderForChrome (), renderForMobile (), etc., because what needs to be done to dis-
play an image might be platform-dependent. In order to write our program that displays all of
the components of a web page, we need to keep track of what particular methods exist to do the
displaying for each type of component. Life would be much easier if we could just call something
like theComponent .display () and have the component’s class figure out what needs to be
done to handle its particular version of displaying!

The Java language provides a construct that captures this idea: the interface. The purpose of an
interface is to specify a desired set of functions that a class might provide. For example, we might
have an interface WebDisplayable that tells us that any object that claims it can be displayed
on a web site must provide methods to display the object in Chrome, in Safari, and on a mobile
device. The interface itself does not provide any details about how to do the displaying; instead it
tells us what methods the object must implement.

This is very similar to what we’ve been doing when we have defined a new abstract data type
(ADT). The definition of the ADT has involved a list of operations we want our ADT to support.
For example, we said that a Stack is a list that must allow us to push a new item onto the top of the
list, pop an item off the top of the list, check how many elements are stored in the list, and check
if the list is empty. The ADT is defined by its desired behavior; as we’ve seen, there are generally
many ways to implement the data structure to produce the desired behavior. Similarly, an interface
specifies a set of desired behaviors for a class; there may be many classes that implement the same
interface, each of which provides its own own way of achieving the desired behaviors.

Creating interfaces
An interface is contained in a . java file, just like a class. It looks something like this:

public interface WebDisplayable {
public void displayChrome () ;
public void displaySafari();

public void displayMobile (String s, int t);



The first line in the file looks like a class declaration, except that it has the word interface
instead of the word class. The rest of the file consists of a list of method headers. Each line ends
with a semicolon, and none of the methods are actually implemented here. At this point, all we
are doing is listing the desired functions of any class that implements WebDisplayable. In this
case, our WebDisplayable interface says that any class that is WebDisplayable must in-
clude three specific methods. These methods can have input parameters (as displayMobile ()
does in our example) and they can have return types.

In our interface, we do not specify how to make these functions happen: there are no method bod-
ies. This is left to the classes that implement our interface.

Implementing interfaces

When we say that a class implements an interface, we are making a promise that the class will
provide an implementation of all of the methods specified in the interface. For example, we might
have a class that begins with the following line:

public class Jpeg implements WebDisplayable {

As usual, we have the class declaration public class Jpeg. This is followed by the words
implements WebDisplayable. By including these words, we are asserting that Jpeg will
contain methods with headers that exactly match the headers listed in the WebDisplayable in-
terface.

Jpeg can also contain methods that are not listed in WebDisplayable. We might, for ex-
ample, want Jpeg to include a method convertToGif () that converts an image file with the
extension . jpeg to one with the extension .gif. This method exists independently from the
WebDisplayable interface.

A class can implement multiple interfaces at the same time. For example, we might want our Jpeg
class to also implement an interface Compressable that includes a compress () method. We
would then declare our Jpeg class as follows:

public class Jpeg implements WebDisplayable, Compressable {

This class declaration is now a promise that Jpeg will include methods with headers that match
all the methods listed in the WebDisplayable interface, and all the methods listed in the
Compressable interface.

Using interfaces

The advantage of using interfaces is that they allow us to work more easily with multiple differ-
ent classes that are capable of the same behaviors. In our web site display example, we might
imagine that we start off with a set of different components that we want to display. The class
corresponding to each of these components (Image, Text, Ad, etc.) should implement the
WebDisplayable interface, and it would be nice if we could somehow deal with a list of object
that are WebDisplayable, without having to worry about what specific type each object is. For
example, we might like to write the following method:




public void showWebsiteChrome (WebDisplayable[] components) {
for(int i = 0; i < components.length; i++) {
components[i] .displayChrome () ;

}

The interesting thing about this method is that the input parameter’s type is an interface, not a
class. What this says is that all of the objects in the input array will be instances of some class that
implements WebDisplayable. This is nice because it allows us a little flexibility (we can store
multiple different types of objects in the array) while also providing some restrictions (the only
types of objects we can store in the array are those that are WebDisplayable).

We can do this. A variable can be declared as an instance of an interface, rather than an instance
of a specific class. For example, we can say:

WebDisplayable myComponent;

This says that myComponent is going to be some sort of object that is WebDisplayable.
However, because the WebDisplayable interface doesn’t contain any method bodies, when
we initialize the variable we must use a specific class that implements WebDisplayable. For
example, we could say:

myComponent = new Image();

since the Tmage class implements WebDisplayable. If we then issue the method call
myComponent .displayChrome (), we will call the particular version of the displayChrome ()
method that lives in the Image class, because Image is the instantiated type of myComponent.

Interfaces in this assignment

The PriorityQueue. java file that you downloaded is an interface. It lists four methods that
any class claiming to be a priority queue must provide: add (Integer toAdd), remove (),
size (), and isEmpty (). You will see that the PQSorted and PQUnsorted classes that I
have provided both implement the PriorityQueue interface, and both do indeed provide im-
plementations of the methods specified in the interface. The PQHeap class, which you will write,
should also implement PriorityQueue.

In the measureTimes () method in Tester. java, you will see the line:
PriorityQueue queue = new PQSorted();

The variable queue is declared as a PriorityQueue, and itis initialized as a PQSorted. The
declaration as type PriorityQueue means that when queue is initialized, it must be initialized
to an instance of PQSorted or PQUnsorted (or, once you write the class, PQHeap). When you
want to test each different type of priority queue, you can simply change the initialization on the
right-hand side.



2 Task 1: Heap Implementation

The PQHeap. java file that you downloaded is currently empty. Your job is to fill it in, us-
ing the array-based Heap implementation that we discussed in class. Specifically, your PQHeap
should implement the PriorityQueue interface, and you will need to fill in the contents of
each method specified in the PriorityQueue interface. You also likely will want to write extra
supporting methods, like siftUp and siftDown.

Make sure you test your code thoroughly before you move on to the next part of the assignment.
You might want to add some code to Tester. java to convince yourself that your add and
remove methods are working properly. If you have errors in your heap code that may affect the
timing results that you obtain in the second part of this assignment. Furthermore, any submitted
code that does not compile will not receive credit.

3 Experiments

Your goal in this part of the assignment is to empirically measure the performance of each of the
three priority queue implementations. I have provided code in the measureTimes () method
of the Tester class that runs a particular timing experiment. The goal of this experiment is to
time how long the add and remove methods take to run on particular values of n (as usual, n is
the number of items in our priority queue). Section [3.1] describes the code that I have provided,
Section [3.2] describes the experiments you will run, and Section [3.3] describes what you should
include in your written report of your experiments.

3.1 Understanding the provided code

Read through the Tester code, which does the following:

e Takes as input an int reps and an int [] record. The array record is a list of all
values of n you’re interested in (sorted in increasing order), and reps indicates how many
times you want to repeat the experiment.

e For each replication of the experiment, we do the following:

— Create a new (initially empty) priority queue

— Add randomly generated elements to the priority queue one at a time. If we’re cur-
rently adding the nth element for one of the values of n stored in our record array,
record the time (using the command System.nanoTime () ) before and after adding
the element; the difference between these two times gives us the duration of the add
operation.

— Remove all of the elements from the priority queue one at a time. If we’re removing
from a priority queue that currently has n elements in it for one of the values of n stored
in our record array, measure the duration of the remove operation.



e After completing all replications of the experiment, compute the average duration (in mil-
liseconds) of add and remove for each n of interest, and return an array of these aver-
ages (times[i] [0] contains the average add time for the ith element of interest, and
times[i] [1] contains the average remove time for the ith element of interest).

Do not change any of the code in the measureTimes () method, except for the line PriorityQueue
queue = new PQSorted () ;, which you can change to test each of the three implementa-
tions. I have set up this method to run a very particular type of timing experiment, and if you
change what it does, you will not get the same results. Again: DO NOT change this method!

Q: But I have a faster/better/cooler way of timing the methods. Can I use that way instead?
A: Nope! Again, there are many ways you could measure the performance of your data structures,
but I want you to use this method because it will reveal some interesting behaviors that aren’t visi-
ble using other timing strategies.

Q: OK, so what’s so special about the way your experiments are set up?

A: The short answer is that my setup ensures that the methods do more or less the same thing every
time they are called on the same value of n. Consider what would happen if instead we interleaved
the calls to add and remove, like so:

for(int i = 1; i <= record[record.length] + 1; i++) {
for(int 7 = 0; J < reps; Jj++) {
int toAdd = (int) (Math.random() = 10000);

// include timing code
add (toAdd) ;

// include timing code
remove () ;

int toAdd = (int) (Math.random() = 10000);
add (toAdd) ;

}

That is, all I’ve done is change the order of the n and reps loops. Now suppose we are on a value
of n on which we have to resize our array. Using this new version of the timing experiment, we
resize during the first call to add that happens on the first iteration of the reps loop, but not on
any subsequent iteration. So now our timing data is not capturing the effect of having to resize on
certain values of n. The code that I've provided in Tester does not have this problem: we create
and use an entirely new priority queue on every replication of the experiment.

Q: What’s the point of the replications?

A: The timing data is very noisy: the same operation can take a different amount of time depending
on lots of factors that have little or nothing to do with what we’re trying to measure. For example,
in the sorted array implementation, our add method will have a different runtime depending on if
the element we’re adding happens to be larger than everything that’s already in our priority queue,
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smaller than everything that’s already in our priority queue, or somewhere in between. If Java’s
garbage collector happens to run while we’re in the middle of timing a method, the time for that
method will be artificially inflated. If lots of users are running code on remus/romulus at the
same time, that can slow things down because you’re all competing for resources. And so on.
Running many replications of the same experiment reduces this noise because the chances that
an unusual bad event happens every time are reasonably low. However, it is nearly impossible to
completely eliminate noise. Don’t worry if you see outliers in your results: this is to be expected!

3.2 Task 2: Run your experiments

Fill in the run () method of Tester to run some experiments. Your run () method should call
measureTimes () to actually do the measurements. Your job in run () is to decide what input
parameters to use—that is, for what values of n you are interested in recording the timing results,
and how many replications you want to run. Some things you might want to consider include:

e Your goal is to get a sense of how well the asymptotic analysis matches up to the empirical
results. Asymptotic analysis deals with very large values of n, so you will need your ns to
get high enough to identify a clear trend.

e On the other hand, as n gets very large, it will take a long time to run your experiments. You
should be patient (it’s reasonable to let your experiment run for, say, an hour per implemen-
tation) but not too patient (your experiments shouldn’t be running for days).

e Do you want to use a different maximum value of n for the three different priority queue
implementations? How does this question relate to the first two points above?

e Are there particular values of n that you want to test because they might have different
behavior than other choices of n? (Hint: when do you call resize ()? Does this happen
for all n?)

e How many times do you want to replicate your experiments? You’ll want to run enough
replications of each experiment to try to reduce the noise. However, as with large values of
n, running many replications will make your experiments take a long time.

To give you a rough sense of what kinds of ns are reasonable, I ran my PQSorted experiments
with values of n up to around 500000.

You are welcome to write your code on your personal computer if you want, but please run your
experiments on remus/romulus.

3.3 Task 3: Write up your results

There is a short written component to this assignment. The purpose of this component is to get
you to reflect on the results of your experiments and think about how your empirical results relate
to what we learn from the asymptotic analysis of our data structures. Specifically, your tasks are
as follows:



1. Explain what choices you made when running your experiments in Section[3.2] What values
of n did you record? Why did you make these choices? How many replications did you run
for each experiment?

2. Graph the results you obtained in your experiments. You should have a separate graph
for each implementation (sorted array, unsorted array, and heap). The z-axis should be n
(the number of elements in the priority queue) and the y-axis should be the average time
per operation in milliseconds. Each graph should include two data sets, one for the add
operations and one for the remove operations.

3. Write a short (~1-2 paragraph) discussion of your observations. Your response should ad-
dress at least the following questions:

e In general, is the asymptotic analysis a good predictor of the shape of the empirical
runtime results?

e Does the asymptotic analysis give you the full picture of the empirical runtimes? What
do you learn from the graphs that you don’t learn from the asymptotic analysis? What
do you learn from the asymptotic analysis without having to run any experiments?

e In what cases (which implementations and operations) does the worst-case asymptotic
analysis give a tight upper bound for all n? When does it not? Why not?

Feel free to note any other interesting observations that you made about the results!

4 Submit your work

Submit your PQHeap . java using either the submission web site or (from remus/romulus)
the cssubmit command:

cssubmit PQHeap. java

and use the numeric menu to select the correct course and assignment. You do not need to submit
the PQSorted. java, PQUnsorted. java, or Tester. java files.

Type up your written responses and bring a hard copy to class.

This assignment is due on Friday, March 2, 9:00am.
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