
COSC-211: DATA STRUCTURES

HW10: DIJKSTRA’S ALGORITHM

Due Monday, April 30, 11:59pm
Reminder regarding intellectual responsibility: This is an individual assignment, and the work
you submit should be your own. Do not look at anyone else’s code, and do not show anyone your
code (except for me and the course TAs).

1 Introduction
In this assignment, you will implement Dijkstra’s algorithm to find the shortest path from a single
vertex to all other vertices in a graph. In doing so, you will reinforce your understanding of
Dijkstra’s algorithm, you’ll get practice working with a graph represented as an adjacency matrix,
and you’ll revisit the heap data structure from earlier in the course.

1.1 Setup
Begin by downloading some starter code:

wget -nv -i https://goo.gl/Yc7Doy

You should now have three Java files:

• Node.java: represents a vertex in the graph. Right now all Node contains is an index,
a compareTo method that doesn’t do anything interesting, and a constructor that sets the
index. You likely will find that you want to add more to Node.

• Heap.java: some code that you’ll recognize from earlier assignments as a heap imple-
mentation of a priority queue. I’m giving you the entire, working heap this time! The heap
relies on the compareTo method in Node to give a priority ordering of Node objects,
so it won’t do anything interesting until you rewrite compareTo to make it do something
meaningful.

• Dijkstra.java: some starter code for your Dijkstra’s algorithm implementation. Specif-
ically, right now the code does the following:

1. Creates a new n×n array of ints, which will be an adjacency matrix representing the
graph.*

2. Calls the fillRandomGraph()method to put some edges in the graph, with weights
in the range 0-9. Right now each edge is created with probability 0.8 and the edge
weights are selected uniformly at random. Feel free to change what this method does
if you want to test your code on different types of graphs.

3. Creates an array of Node objects, one for each vertex in the graph.

*Here n is an input parameter to the program. For example, if you run the program using
the command java Dijkstra 5, this will generate a graph with 5 nodes. If you don’t
specify a command-line argument to the program, the default is a 10-node graph.

1

https://kgardner.people.amherst.edu/courses/s18/cosc211/
https://kgardner.people.amherst.edu/courses/s18/cosc211/assignments/hw10/hw10.pdf


2 Your Tasks
Your job in this assignment is to implement Dijkstra’s algorithm to find the shortest path from
vertex 0 (i.e., the node with index 0, which is in position 0 of the array created in the starter code)
to every other vertex in the graph. Specifically, you will do the following:

1. In Node.java, add any fields that you might need to keep track of information in the
course of your Dijkstra search.

2. In Node.java, change the compareTo method to make it do something meaningful. The
method takes a Node other as input, and should return a negative number if this is
smaller than other, 0 if they are equal, and a positive number if this is greater than
other. This method is used to compare nodes in the heap that you’ll use for your Dijkstra
search, so your compareTo method should provide an answer that means the right thing in
the context of the Dijkstra search.

3. In Heap.java, write a method called decreaseKey() that takes a Node and an int as
input and, if the input int is smaller than the input Node’s current key, updates the Node’s
key and re-heapifies the heap.

4. In Dijkstra.java, write a method called dijkstra that takes as input an int[][]
representing a graph’s adjacency matrix and a Node[] containing a list of the graph’s nodes,
and runs a Dijkstra search to find the shortest path from node 0 to every other node in the
graph. By the end of this method, each Node should be storing its own information about
its distance from node 0.

5. In Dijkstra.java, write a method called printPath takes as input a Node and prints
out the indices of all nodes along the shortest path from node 0 to that node. (This is similar
to the task, in HW9, of finding the path from exit back to entrance once you have solved
the maze. In the mazes, it was less clear why we need to do that given that there’s a clear
visualization of the solution path. Here, there’s not a good way of visualizing what path we
took in the graph, so it’s useful to have a method to reconstruct solution paths.)

3 Submit your work
Make sure you test your code thoroughly before submitting it. Code that does not compile will
not receive credit.

Submit all of your Java files using either the submission web site or (from remus/romulus) the
command line:

$ cssubmit *.java

This assignment is due on Monday, April 30, 11:59pm.

2


	Introduction
	Setup

	Your Tasks
	Submit your work

