
COSC 311: ALGORITHMS

HW5: NP-COMPLETENESS

Solutions

Problem 1: Generalizing Independent Set.

The Set Packing problem is defined as follows:

Input:

• A set U consisting of n elements

• m subsets of U , S1, . . . , Sm

• A positive integer k

Output: Is there a collection of at least k subsets such that no two subsets intersect?

The Set Packing problem can be seen as a generalization of Independent Set. In the Independent
Set problem, we want to find a subset of nodes such that none of the nodes in our set are connected
by an edge. Set Packing doesn’t make any assumptions that the elements are organized into a
graph structure or that conflicts between elements are explicitly encoded as edges. Nonetheless,
both problems involve choosing a conflict-free set of items.

a) Give a polynomial-time reduction from Independent Set to Set Packing. What is the runtime of
your reduction?

Solution: Our goal is to take an arbitrary instance of Independent Set and take polynomial time to
turn it into an instance of Set Packing. We start with our input to Independent Set: an undirected,
unweighted graph G = (V,E) and a positive integer k. Our reduction is as follows:

• For every edge (u, v) ∈ E, create one element xu,v and add it to U .

• For every vertex v ∈ V , create one subset Sv = {xu,v ∈ U : (u, v) ∈ E}. That is, we create
a subset for vertex v that includes all of the elements in U corresponding to edges incident
to v in the original graph.

• Set k in our Set Packing instance to be equal to k in our Independent Set instance.

We need to show that “yes” instances of Independent Set map to “yes” instances of Set Packing,
and “yes” instances of Set Packing map to “yes” instances of Independent Set.

1) Suppose we start with an instance of Independent Set in which it is possible to find a set S of
at least k vertices that are all independent. Then for every vertex v ∈ S, choose the corresponding
subset Sv in our set packing instance. Consider any two subsets Su and Sv that were chosen in this
way, and suppose that subsets Su and Sv have an element in common. Then there must have been
an edge between u and v in the original input graph to independent set. But this contradicts the

1

https://kgardner.people.amherst.edu/courses/f18/cosc311/
https://kgardner.people.amherst.edu/courses/f18/cosc311/hw/hw5/hw5.pdf

fact that u and v were part of set S, and therefore independent. Hence Su and Sv have no elements
in common, and so the collection of subsets {Sv : v ∈ S} is a collection of at least k subsets such
that no two subsets intersect.

2) Suppose our instance of Set Packing contains a collection C of at least k subsets such that no
two subsets intersect. Then consider nodes u, v such that Su, Sv ∈ C. Suppose there is an edge
between u and v in our original graph. Then element xu,v must exist in our Set Packing instance,
and is included in both Su and Sv. But this contradicts the fact that Su, Sv ∈ C, since their inclu-
sion in the Set Packing solution means that they have no elements in common. Hence edge (u, v)
must not exist. This tells us that {v : Sv ∈ C} forms an independent set of at least k nodes in the
original graph.

Our reduction involves creating one element for each edge in our graph (of which there are m) and
one subset for each node in our graph (of which there are n). We can do this in time O(n + m).

b) Show how your reduction from part (a) turns the following instance of Independent Set, with
k = 2, into an instance of Set Packing:

Solution: We end up with the following instance of Set Packing, with k = 2. There is a set pack-
ing of size 2 in this instance: for example, we could choose the yellow set and the blue set. This
corresponds to an independent set of size 2 in our original graph: nodes c and e.

2

Problem 2: A hard scheduling problem.
In the Interval Scheduling problem, we had a set of jobs, each with a specified start time and fin-
ish time, and a single processor; our goal was to schedule as many jobs as possible without any
conflicts. We saw in class that the Interval Scheduling problem can be solved in polynomial time
using a greedy algorithm that always chooses the job with the earliest finish time.

Suppose that instead of requiring a single interval of processing time, each job instead specifies a
set of intervals during which it requires the processor. For example, job j might require the proces-
sor from 9-10am and from 1-2pm. As before, we have a single processor and we want to schedule
as many jobs as possible without conflicts. If you schedule job j, you must give it all time intervals
that it requires. Hence you cannot schedule any other job from 9-10 or from 1-2, but you could
still schedule other jobs at any other time, including the interval from 10am-1pm.

Specifically, the Multiple Interval Scheduling problem is defined as follows:

Input:

• A set J of jobs, where |J | = n

• For each job j ∈ J , a set of time intervals during which job j requires the processor

• A positive integer k

Output: Is it possible to schedule at least k jobs such that no two jobs conflict?

Your job is to show that Multiple Interval Scheduling is NP-complete. Specifically:

a) Show that Multiple Interval Scheduling is in NP.

Solution: Our certificate is a subset S of k jobs. Given the original set J of jobs and a proposed
solution S, it is easy to check in time O(k2) whether any jobs in the set S conflict by running
through all pairs of jobs, and for each pair of jobs running through all pairs of intervals. Since
k ≤ n, this takes time O(n2) (assuming that the number of intervals per job is upper bounded by a
constant; if we remove this assumption and simply say that the number of possible time intervals
is some number m, then checking for conflicts in this way takes time O((nm)2)). Since we can
define a polynomial time verifier for Multiple Interval Scheduling, we know that Multiple Interval
Scheduling is in NP.

b) Give a polynomial-time reduction from Set Packing to Multiple Interval Scheduling (as part of
your reduction, you should explain how you know that “yes” instances of Set Packing map to “yes”
instances of Multiple Interval Scheduling, and vice versa). What is the runtime of your reduction?

Solution: We create our instance of Multiple Interval Scheduling as follows:

• For each element u ∈ U , create a new one-hour time interval that does not overlap with
any previously created intervals (i.e., map the first element of U to 9-10am, map the second
element of U to 10-11am, etc).

3

• For each subset Sj in the Set Packing instance, create a job j that requires the time intervals
corresponding to the elements included in Sj .

• Set k in the Multiple Interval Scheduling instance equal to k in the Set Packing instance.

We need to show that “yes” instances of Set Packing map to “yes” instances of Multiple Interval
Scheduling, and vice versa.

1) Suppose we start with an instance of Set Packing that contains a collection C of at least k subsets
such that no two subsets intersect. Then we can construct a schedule of at least k non-conflicting
jobs by including job j in our schedule if subset Sj is in C. To see why this is a valid schedule, as-
sume that two jobs i and j chosen in this way have a conflict. Then there is some time interval that
is used by both jobs i and j; this time interval corresponds to an element in U that must therefore
be included in both Si and Sj . But this contradicts the fact that Si and Sj were both in C. Hence
jobs i and j do not conflict. Since there were at least k subsets in our Set Packing solution, there
are at least k jobs in our schedule. So we have a “yes” instance of Multiple Interval Scheduling.

2) Suppose our instance of Multiple Interval Scheduling has a valid schedule with at least k jobs.
Then we can construct a solution to our Set Packing instance by including subset Sj in our col-
lection of subsets if job j is included in our schedule. To see why this is a valid solution to Set
Packing, suppose that two subsets Sj and Si chosen in this way have an element in common. This
element corresponds to a time interval that is required by both job i and job j. But this contradicts
the fact that i and j were both part of a valid schedule. Hence subsets Sj and Si must not have
any elements in common. Since there were at least k jobs included in our schedule, there are at
least k subsets included in our solution to Set Packing. So we have a “yes” instance of Set Packing.

Our reduction requires us to create one time interval for every element in U , of which there are n,
and one job for every subset in our Set Packing instance, of which there are m. For each job, we
then run through all n time intervals and add the intervals corresponding to the elements in that
job’s corresponding subset. This takes time O(mn). Hence our reduction takes time O(mn).

c) Show how your reduction turns the following instance of Set Packing, with k = 3, into an
instance of Multiple Interval Scheduling:

4

Solution: We map our instance of Set Packing to an instance of Multiple Interval Scheduling as
follows. Create time intervals:

Element Time Interval
a 9-10am
b 10-11am
c 11am-12pm
d 12-1pm
e 1-2pm
f 2-3pm

And create jobs:

Job Required intervals
1 9-10am, 12-1pm, 2-3pm
2 10-11am, 12-1pm
3 10am-12pm, 1-2pm
4 1-3pm

We are looking for a valid schedule of at least k = 3 jobs.

Problem 3: Not-All-Equal 3-SAT.
It turns out that there are many variants on boolean satisfiability problems. We initially decided
to work with 3-SAT instead of SAT because its additional structure (requiring each clause to have
three terms instead of any number of terms) was slightly easier to work with. In some cases, it
helps to consider even further variants on the standard satisfiability problem. One such variant
is Not-All-Equal 3-SAT. As you might expect based on its name, in Not-All-Equal 3-SAT we are
trying to satisfy a set of clauses, each of length 3, where at least one term in each clause must be
set to false. Specifically, we have:

Input:

• A set of variables X = {x1, . . . , x`}

• A set of clauses C1, . . . , Ck, each of length 3

Output: Is there a satisfying assignment such that for each clause, the term assignments are not all
equal (i.e., at least one term is set to false)?

For example, consider the conjunction

(x1 ∨ x̄2 ∨ x3) ∧ (x1 ∨ x4 ∨ x̄5).

The assignment x1 = x3 = x4 = x5 = true, x2 = false is not a NAE satisfying assign-
ment because in the first clause, all three terms x1, x̄2, and x3 are set to true. The assignment

5

x3 = x4 = x5 = true, x1 = x2 = false is a NAE satisfying assignment.

We won’t show this on this homework assignment, but it turns out that Not-All-Equal 3-SAT is
NP-complete.

Now considering a seemingly unrelated problem: that of finding cuts in a graph. We know how to
solve the Min Cut problem efficiently using the Max-Flow Min-Cut Theorem. But what about the
flip side? In the Max Cut problem, our goal is to find a cut in a graph that has the highest capacity
possible. We define the k-Cut problem (which is the decision version of Max Cut) as follows:

Input:

• An undirected, weighted graph G = (V,E), where |V | = n and |E| = m

• For each edge e ∈ E, a positive integer capacity c(e)

• A positive integer k

Output: Is there a cut of G that has capacity at least k?

a) The k-Cut problem is a decision problem, but originally we were interested in the optimization
problem Max Cut, in which we’re looking for the maximum capacity of any cut in the graph. Sup-
pose we had an algorithm A(G, k) that could solve k-Cut in polynomial time. How could we use
A to solve Max Cut in polynomial time in n and m? (You may assume that edge capacities are
polynomial in n and m.)

Solution: Let kmax =
∑

e c(e). We can repeatedly call A with different values of k, binary search-
ing between k = 0 and k = kmax. This will require O(log kmax) calls to A; log kmax is polynomial
in n and m since all edge capacities are polynomial in n and m. So the overall runtime of this al-
gorithm is O(fA(n,m) log kmax), where fA(n,m) is the runtime of algorithm A(G, k). Assuming
fA(n,m) is polynomial in n and m, the overall runtime is polynomial.

b) Unfortunately, we are unlikely to ever find a polynomial time algorithm to solve k-Cut. Use the
fact that NAE-3-SAT is NP-complete to prove that k-Cut is NP-complete.

Solution: We first need to prove that k-Cut is in NP. Our certificate will be a partition of the ver-
tices in E. Given an instance of k-Cut and a proposed solution, we can run through all of the edges
in G, add up the capacities of the edges that cross the cut, and check whether the total capacity of
the cut is greater than k. This takes time O(m). Since we have defined a polynomial time verifier
for k-Cut, we know that k-Cut is in NP.

Next we need to show that all problems in NP can be reduced to k-Cut. We will do this by taking a
problem that is already known to be NP-complete, namely NAE-3-SAT, and reducing it to k-Cut.
Our goal is to take an instance of NAE-3-SAT and turn it into an instance of k-Cut. We will create
two nodes for each variable xi in our NAE-3-SAT instance: one corresponding to xi and the other
corresponding to x̄i. We connect these two nodes by an edge. We also create a “triangle” of edges

6

in our k-Cut instance for each clause in our NAE-3-SAT instance.

The trick will be to set capacities on our edges so that we can translate a sufficiently high-weight cut
in our graph into a NAE-3-SAT truth assignment. We can imagine the cut partitioning our nodes so
that the nodes on one side correspond to terms set to true, and nodes on the other side correspond
to terms set to false. In order for us to end up with a satisfying assignment, two properties have to
be true about our resulting cut:

1. Nodes xi and x̄i must be on opposite sides of the cut.

2. In every “clause” triangle, there must be at least one node on each side of the cut.

To accomplish property (1), we must set the capacity on edge (xi, x̄i) high enough that this edge
must be included in any sufficiently high-valued cut. In order to accomplish property (2), exactly
two edges in each “clause” triangle must cross the cut.

We will define our reduction as follows:

• For each variable xi in the NAE-3-SAT instance, create nodes labeled xi and x̄i.

• For each variable xi in the NAE-3-SAT instance, add edge (xi, x̄i) with capacity 10m.

• For each clause (xi, xj, xk) in the NAE-3-SAT instance, add edges (xi, xj), (xi, xk), and
(xj, xk), each with capacity 1.

• Set k = 10nm + 2m.

We now need to show that “yes” instances of NAE-3-SAT map to “yes” instances of k-Cut, and
vice versa.

1) We want to show that if our instance of NAE-3-SAT is satisfiable, then our graph contains a cut
of value at least k. Take a satisfying assignment to the NAE-3-SAT instance, and consider the cut
in which all terms set to true are on one side, and all terms set to false are on the other. All of the
edges (xi, x̄i) cross this cut, contributing 10mn to the value of the cut. And since we have a sat-
isfying instance of NAE-3-SAT, two edges from each “clause” triangle cross the cut, contributing
2m to the value of the cut. Hence the total value of the cut is 10mn + 2m, so we have a “yes”
instance of k-Cut.

2) We want to show that if our instance of k-Cut has a cut of value at least k, then our instance of
NAE-3-SAT is satisfiable. We first will show that for all i, nodes xi and x̄i must be on opposite
sides of the cut. Suppose they were not. Then an upper bound on the value of the cut is the sum of
all other edge capacities in the graph: this is 10m(n − 1) + 3m = 10mn − 7m < 10mn + 2m,
which contradicts the fact that the graph has a cut of value at least k = 10mn + 2m. Hence xi

and x̄i are on opposite sides of the cut. This means that our cut corresponds to a truth assignment
to the variables. Next we need to show that two edges from each “clause” triangle cross the cut.
Again, suppose not. Then an upper bound on the value of the cut is 10mn + 2(m − 1) + 1 =
10mn + 2m − 1 < 10mn + 2m = k, which again contradicts the fact that the graph has a cut of
value at least k. Hence there must be exactly two edges from each “clause” triangle crossing the

7

cut (note that all three edges in a “clause” triangle cannot cross the cut). This means that within
each clause, there is at least one term on each side of the cut. Hence we have fulfilled the NAE
requirement, and we have a “yes” instance of NAE-3-SAT.

We created 2 nodes for each variable and one edge between these nodes: O(`). We then created
three edges for each clause: O(k). The total runtime for our reduction is O(` + k), so we have a
polynomial time reduction.

8

