
Largest Sum Subsequence - Proof of Correctness
Here’s the Largest Sum Subsequence algorithm we developed in class:

1 LSS(A, lo, hi) // A is a length-n array of numbers
2 // Base case: only one element in the array
3 if hi == lo, return A[lo]
4 // Divide: split the array in half
5 mid = (hi + lo)/2
6 // Conquer: solve the LSS problem on each half
7 left = LSS(A, lo, mid)
8 right = LSS(A, mid+1, hi)
9 // Combine: find the largest crossing sum and compare
10 cross = LargestCrossingSum(A, lo, mid, hi)
11 return max{left, right, cross}

12 LargestCrossingSum(A, lo, mid, hi)
13 leftSum = A[mid] // running total
14 largestL = leftSum // largest sum found so far
15 for i = mid-1 down to lo
16 leftSum += A[i]
17 if leftSum > largestL
18 largestL = leftSum
19 // repeat the same idea to find largestR
20 return largestL + largestR

Theorem 1. For any n that is a power of 2, LSS correctly finds the largest sum subsequence in a
length-n array.

Proof. We will prove this by induction on n. (Note that the proof will assume that the LSS is
unique—there are not two different subsequences with the same largest value—but only minor
adaptations are required to handle the more general case where the LSS may not be unique.)

Base case (n = 1): When n = 1, we are computing the largest sum subsequence of an array con-
taining a single element. The answer should be that element. Sure enough, if our array contains
only one element we fall into the base case of our LSS algorithm, which returns the only element
in our array. Hence LSS is correct when n = 1.

Inductive hypothesis: Assume that LSS gives the correct answer for any input array of length n for
some n ≥ 1.

Inductive step: We will show that LSS gives the correct answer for any input array of length 2n.

Our LSS algorithm has three steps:

• The call to LSS(A, lo, mid). The purpose of this call is to find the LSS in the left half
of the array. The left half of the array is an array of size n, so by the inductive hypothesis we

1



know that this call correctly finds and returns the value of the largest sum subsequence that
lies entirely in the left half of the array. Call this value vleft.

• The call to LSS(A, mid+1, hi). The purpose of this call is to find the LSS in the
right half of the array. The right half of the array is an array of size n, so by the inductive
hypothesis we know that this call correctly finds and returns the value of the largest sum
subsequence that lies entirely in the right half of the array. Call this value vright.

• The call to LargestCrossingSum(A, lo, mid hi). The purpose of this call is to
find the LSS that crosses over the middle. By Lemma 1 below (a lemma is a “mini theorem”
that we use along the way to proving a larger theorem) LargestCrossingSum correctly
finds and returns the value of the largest sum subsequence that crosses the middle. Call this
value vcross.

Call the true value of the largest sum subsequence vmax. We observe that there are three possibili-
ties for where vmax could fall within our length-2n array:

1. vmax lies entirely in the first n elements of the array (i.e., entirely in the left half).

2. vmax lies entirely in the last n elements of the array (i.e., entirely in the right half).

3. vmax crosses over the middle (i.e., it contains at least one element in the left half and at least
one element in the right half).

We will show that the LSS algorithm correctly finds vmax in each of the three cases.

Case 1 (vmax lies entirely in the left half of the array): Then it must be the case that vleft =
vmax: if vleft > vmax then we contradict the fact that vmax is the LSS of the entire array, and if
vleft < vmax then the call to LSS(A, lo, hi) did not return the correct answer, since vmax lies
entirely in the left half and thus should have been considered by the left-hand recursive call.

It must also be the case that vright < vmax: if vright > vmax, then we have found a larger LSS for
the entire array, contradicting the fact that vmax is the LSS of the entire array. Similarly, we must
have that vcross < vmax.

We have vmax = vleft > vright, vcross, so the return statement in line 11 correctly returns vmax.
Hence in Case 1 LSS correctly finds the largest sum subsequence of the entire array.

Case 2 (vmax lies entirely in the right half of the array): This case is entirely symmetric to Case
1, and so is omitted.

Case 3 (vmax crosses over the middle): Then it must be the case that vcross = vmax: if vcross >
vmax then we have found a larger subsequence for the entire array, contradicting the fact that vmax

is the LSS for the entire array, and if vcross < vmax then the call to LargestCrossingSum did
not return the correct answer, since vmax crosses the middle and should have been considered by
LargestCrossingSum.

2



It must also be the case that vleft < vmax: if vleft > vmax then we have found a larger LSS for the
entire array, contradicting the fact that vmax is the LSS of the entire array. Similarly, we must have
that vright < vmax.

We have vmax = vcross > vleft, vright, so the return statement in line 11 correctly returns vmax.
Hence in Case 3 LSS correctly finds the largest sum subsequence of the entire array.

In all three cases, LSS finds the correct answer for an array of size 2n. Hence by induction, LSS
is correct for all values of n that are powers of 2.

Lemma 1. LargestCrossingSum correctly finds the largest sum of any contiguous subse-
quence containing the elements at both mid and mid+1.

Proof. Initially, leftSum contains just the element at A[mid], as does largestL. So before
we start the loop in lines 15-18, largestL contains the largest subsequence in the range from
mid to mid. After one iteration of the loop, we have added the element at A[mid-1] to our run-
ning total in leftSum and replaced the largest sum found so far in largestL if our new running
total is greater than the value previously stored in largestL. At this point largestL contains
the largest subsequence starting in the range from mid-1 to mid and ending at mid. We repeat
this process: after iteration i of our loop, largestL contains the largest subsequence starting
in the range from i to mid and ending at mid. By the end of the loop, largestL contains the
largest subsequence starting in the range from lo to mid and ending at mid.

By similar reasoning, at the end of the step in line 19 largestR contains the largest subsequence
starting at mid+1 and ending in the range from mid+1 to hi.

Finally, we’ll show that largestL + largestR is the largest sum subsequence that crosses
the middle. Suppose it’s not. Then there is some other contiguous subsequence that crosses the
middle and has larger value; call that sequence’s value x. We can split up x at mid so that xLeft
is the sum to the left of mid (including mid) and xRight is the sum to the right of mid (not in-
cluding mid). We know that largestL > xLeft and largestR > xRight. So we could
make x larger by replacing xLeft and xRight with largestL and largestR. This contra-
dicts the assumption that x has larger value than largestL + largestR. So largestL +
largestR must be the largest sum subsequence that crosses the middle.

3


