
COSC-311 Sample Midterm Questions

Note: There will be four problems on the actual midterm. The problems on this
handout are meant to give you a sense of the types of questions I might ask. This
study guide is not comprehensive: there are topics we have covered in class that are
not represented in the sample problems. Everything we have done in class or on
homework is fair game for the midterm.

1 Runtime Analysis

(a) What does it mean for f(n) to be big-O of g(n)?

(b) Here is a recurrence:
T (n) = 2T (n/3) + 4n

Prove by induction that T (n) = O(n).

2 Stooge Sort

Consider the following sorting algorithm:

Stoogesort(A, i, j){

if A[i] > A[j]

swap(A[i], A[j])

if (j - i + 1) > 2

t = (j - i + 1) / 3

Stoogesort(A, i, j-t)

Stoogesort(A, i+t, j)

Stoogesort(A, i, j-t)

return A

}

(a) Write a recurrence for the runtime of this algorithm.

(b) Is Stooge Sort more or less efficient than Insertion Sort? Why? You may want to
use the Master Theorem, draw a recursion tree, or use some other strategy to reason
about the asymptotic runtime of Stooge Sort.

1

3 Knapsacks

In the Fractional Knapsack Problem, we had a set of n items, where each item i has
value vi and weight wi. We also had a knapsack that could hold up to total weight
W . Our goal was to maximize the value stored in the knapsack without exceeding
the weight limit.

(a) What was the algorithm we used to select what fraction of each item i, pi, to put
in the knapsack?

(b) Now suppose that we must set pi = 0 or pi = 1 for each item; that is, we must
take all of the item or none of it. This is called the 0-1 Knapsack Problem. Give
a counterexample that shows that the algorithm you gave in part (a) no longer is
guaranteed to find the optimal solution.

(c) Write a recurrence for a dynamic programming algorithm that finds the optimal
solution to the 0-1 Knapsack Problem.

4 Minimum Spanning Trees

Ryan’s cool new Minimum Spanning Tree algorithm works as follows on a graph with
n vertices:

• Initialize set T = ∅ and S = u, where u is a randomly chosen vertex.

• Iterate n− 1 times: Let v be the vertex most recently added to S. Consider all
edges from v to some other vertex x that has not yet been added to S. Among
those edges, let (v, w) be the edge of lowest cost. Add edge (v, w) to T and add
w to S.

• If v doesn’t have any neighbors not already in S, go back to the second-most-
recently added vertex, and keep backtracking until you find a vertex that has
at least one neighbor not already in S. Use that vertex instead of v in this
iteration.

Sadly this algorithm does not work.

(a) State the theorem that tells us which edges are safe to add to a partial MST T .

(b) Explain why Ryan’s algorithm doesn’t fit the criteria for this theorem.

(c) Give an example of a graph with at least 3 vertices for which Ryan’s algorithm
returns the wrong answer. What does the algorithm do? What is the correct MST?

2

5 More Minimum Spanning Trees

Here is a graph:

(a) Draw the minimum spanning tree that would result from running Prim’s algo-
rithm on this graph, starting at vertex s. List the order in which edges are added to
the tree.

(b) Draw the minimum spanning tree that would result from running Kruskal’s al-
gorithm on this graph. List the order in which edges are added to the tree.

6 Scheduling

In the Interval Scheduling problem, we were given a set of jobs, where each job i
required our resource starting at time a(i) and ending at time f(i), and only one job
could be scheduled to use the resource at a time. If two jobs conflict, we must discard
one of them. Our goal was to come up with a subset of jobs S such that there are no
conflicts among the jobs in S, and |S| is maximized.

(a) Dana suggests the following greedy algorithm: let x(i) = f(i) − a(i) be the size
of job i, and let n(i) be the number of jobs conflicting with job i. Add to S the job i
with the smallest x(i) ∗ n(i), then throw out any jobs conflicting with i and recur on
the remaining jobs. Give a counterexample that shows that Dana’s algorithm does
not always produce the optimal solution.

(b) What is the correct greedy algorithm to solve this problem optimally?

3

7 Shortest Paths

Here is a graph:

(a) Run the Bellman-Ford algorithm to find the shortest path cost from s to every
other node in the graph. Show the table that you fill in while running the algorithm

(b) How would you use the table you filled in part (a) to reconstruct the actual paths
that produce the shortest path cost?

4

