
Proving Correctness with Invariants
Today in class we talked about how to prove that our insertion sort algorithm is correct using invari-
ants. This document provides a formally written proof of the reasoning we discussed, including
the inner while loop.

Loop-1

1. Initialization. By the precondition, to_sort contains a multiset of ints. None of the code
between the precondition and the first loop-1 iteration touches to_sort, so to_sort contains
all of the original data at the start of the first iteration, satisfying invariant (1). Just before the
start of the loop, we set i=1, so subarray to_sort[0...i-1] consists of just element 0 (i.e.,
a single element), so it must be sorted, satisfying invariant (2).

2. Maintenance. We want to show that if our invariant is true and the loop condition (i.e, i<n) is
true, then after running the code in the body of the loop, the invariant remains true. By arguments
that we will make below regarding loop-2, we will see that the loop-2 postcondition holds. This
says that if val were stored in to_sort[j+1] then the subarray to_sort[0...i] would
be sorted and would contain all of the original data. On the next line of code, we store val in
to_sort[j+1], so the array contains all of the original data and subarray to_sort[0...i]
is sorted. We then increment i, so subarray to_sort[0...i-1] is sorted and contains all of
the original data. These are exactly our loop-1 invariants.

3. Termination. The loop terminates when i=n. The first loop-1 invariant tells us that to_sort
contains all of the original data, satisfying postcondition (1). The second loop-2 invariant tells us
that \to_sort[0...i-1] is sorted. But when i=n, this subarray is to_sort[0...n-1],
which is the entire array. Hence the second postcondition also is satisfied. Note that if we never
enter the loop, then we reach the termination state because n<i=1. In this case our array consists
of 0 or 1 element, which must be sorted. In this case our postconditions also hold.

Loop-2

We will use the loop-1 invariants as preconditions for loop-2.

1. Initialization. The first loop-1 invariant tells us that to_sort contains all of the original
data. In the following two lines of code, we remove to_sort[i] and set j=i-1, so we have
removed the element at position j+1. The first loop-2 invariant follows. Since j=i-1, ignoring
to_sort[j+1] is the same as ignoring to_sort[i]. Ignoring to_sort[i], the subarray
to_sort[0...i] is the same as subarray to_sort[0...i-1], which we know from the
second loop-1 invariant is sorted. Hence the second loop-2 invariant holds. At the start of loop-2,
j=i-1, so j+2=i+1. This means that the subarray to_sort[j+2...i] is equivalent to sub-
array to_sort[i+1...i], which is empty, so the third loop-2 invariant holds vacuously.

2. Maintenance. Invariants 1 and 2 follow straightforwardly from the assertions after each line
of code in the loop body. All we are doing here is shifting data and shifting the corresponding

1



array indices in our assertions. Invariant 3 is a bit trickier. In the first line of the body of the
loop, we shift the element at position j to position j+1. Since our loop condition checks that
val<to_sort[j], we know that the element that we moved into position j+1 is greater than
val. Our third invariant says that all of the data in subarray to_sort[j+1...i] is greater
than val, and we just put an element greater than val into position j+1, so we can now assert
that all of the data in subarray to_sort[j+1...i] is greater than val. Finally we decrement
j, bringing us back to our third invariant as stated: the data in subarray to_sort[j+2...i] is
greater than val.

3. Termination. The postcondition states that if val were stored in to_sort[i], the sub-
array to_sort[0...i] would be sorted and would contain all of the original data. That the
array would contain all of the original data follows immediately from the first loop-2 invariant.
The fact that the loop terminated means that we are in one of two cases. If the loop terminated
because j=-1<0, then we know that the subarray to_sort[1...i] is sorted (by invariant
2) and all elements in this subarray are greater than val (by invariant 3), hence after inserting
val into position j+1=0 the subaray to_sort[0...i] is sorted. If the loop terminated be-
cause val>=to_sort[j], then (a) all data in subarray to_sort[j+2...i] is greater than
val (by invariant 3), (b) all data in subarray to_sort[0...j] is smaller than val (by the
fact that val>=to_sort[j]), and (c) the data in each of subarrays to_sort[0...j] and
to_sort[j+2...i] is sorted (by invariant 2). Hence after inserting val into position j+1,
the whole subarray to_sort[0...i] is sorted.

2


