Proving Correctness with Invariants

Today in class we talked about how to prove that our insertion sort algorithm is correct using invari-
ants. This document provides a formally written proof of the reasoning we discussed, including
the inner while loop.

Loop-1

1. Initialization. By the precondition, to_sort contains a multiset of ints. None of the code
between the precondition and the first loop-1 iteration touches to_sort, so to_sort contains
all of the original data at the start of the first iteration, satisfying invariant (1). Just before the
start of the loop, we set 1=1, so subarray to_sort [0...1i-1] consists of just element O (i.e.,
a single element), so it must be sorted, satisfying invariant (2).

2. Maintenance. We want to show that if our invariant is true and the loop condition (i.e, 1<n) is
true, then after running the code in the body of the loop, the invariant remains true. By arguments
that we will make below regarding loop-2, we will see that the loop-2 postcondition holds. This
says that if val were stored in to_sort [j+1] then the subarray to_sort [0...1] would
be sorted and would contain all of the original data. On the next line of code, we store val in
to_sort [J+11], so the array contains all of the original data and subarray to_sort [0...1]
is sorted. We then increment i, so subarray to_sort [0...1i-1] is sorted and contains all of
the original data. These are exactly our loop-1 invariants.

3. Termination. The loop terminates when i=n. The first loop-1 invariant tells us that to_sort
contains all of the original data, satisfying postcondition (1). The second loop-2 invariant tells us
that \to_sort [0...1i-1] is sorted. But when i=n, this subarray is to_sort [0...n-1],
which is the entire array. Hence the second postcondition also is satisfied. Note that if we never
enter the loop, then we reach the termination state because n<i=1. In this case our array consists
of 0 or 1 element, which must be sorted. In this case our postconditions also hold.

Loop-2

We will use the loop-1 invariants as preconditions for loop-2.

1. Imitialization. The first loop-1 invariant tells us that to_sort contains all of the original
data. In the following two lines of code, we remove to_sort [1] and set j=i-1, so we have

removed the element at position j+1. The first loop-2 invariant follows. Since j=i-1, ignoring
to_sort [J+1] is the same as ignoring to_sort [1]. Ignoring to_sort [1], the subarray

to_sort[0...1i] is the same as subarray to_sort [0...i-1], which we know from the
second loop-1 invariant is sorted. Hence the second loop-2 invariant holds. At the start of loop-2,
j=i-1,s0 j+2=1i+1. This means that the subarray to_sort [j+2...1] is equivalent to sub-

array to_sort [1i+1...1], which is empty, so the third loop-2 invariant holds vacuously.

2. Maintenance. Invariants 1 and 2 follow straightforwardly from the assertions after each line
of code in the loop body. All we are doing here is shifting data and shifting the corresponding



array indices in our assertions. Invariant 3 is a bit trickier. In the first line of the body of the
loop, we shift the element at position j to position j+1. Since our loop condition checks that
val<to_sort[7J], we know that the element that we moved into position j+1 is greater than
val. Our third invariant says that all of the data in subarray to_sort [j+1...1] is greater
than val, and we just put an element greater than val into position j+1, so we can now assert
that all of the data in subarray to_sort [j+1...1i] is greater than val. Finally we decrement
j, bringing us back to our third invariant as stated: the data in subarray to_sort [J+2...1] is
greater than val.

3. Termination. The postcondition states that if val were stored in to_sort [i], the sub-
array to_sort [0...1] would be sorted and would contain all of the original data. That the
array would contain all of the original data follows immediately from the first loop-2 invariant.
The fact that the loop terminated means that we are in one of two cases. If the loop terminated
because j=-1<0, then we know that the subarray to_sort[1...1] is sorted (by invariant
2) and all elements in this subarray are greater than val (by invariant 3), hence after inserting
val into position j+1=0 the subaray to_sort [0...1] is sorted. If the loop terminated be-
cause val>=to_sort []j], then (a) all data in subarray to_sort [j+2...1] is greater than
val (by invariant 3), (b) all data in subarray to_sort [0...J] is smaller than val (by the
fact that val>=to_sort []j]), and (c) the data in each of subarrays to_sort [0...J] and
to_sort[j+2...1] is sorted (by invariant 2). Hence after inserting val into position j+1,
the whole subarray to_sort [0...1] is sorted.



