
Greedy Algorithms
For each of the below problems, think about how you would design a greedy algorithm to solve
it optimally. What are some possible options for the greedy choice you make at each step? Prove
that there is always an optimal solution that makes the greedy choice, and prove that the prob-
lem exhibits the optimal substructure property (an optimal solution to the problem consists of the
greedy choice and an optimal solution to the resulting subproblem). We will discuss some of these
problems in class next week.

1. Making change. When you go to the grocery store and pay in cash, chances are you receive
some change. Usually there are several possible ways of making change: if I need 37 cents in
change, I could be given three dimes, a nickel, and two pennies, or I could be given a quarter two
nickels, and two pennies, or I could be given 37 pennies, etc. But nobody likes carrying around lots
of spare change (unless you have coin-operated laundry, perhaps) so we want the number of coins
given as change to be as few as possible. In the change making problem, we have the following:

• Input: A value V < 100, in cents.

• Output: A set S of U.S. coins (quarter=25g, dime=10g, nickel=5g, penny=1g) such that the
total value of the coins in S is equal to V and |S| is minimized (the set contains as few coins
as possible).

2. Scheduling to minimize lateness. In the interval scheduling problem, we had a single resource
(our supercomputer) that could only run one job at a time. Many users submitted jobs that they
wanted to run, each of which had a fixed time at which the job must start and finish running. Our
job was to come up with a schedule consisting of some subset of the jobs, such that there were no
conflicts between jobs and the number of jobs we ran was maximized.

In the scheduling to minimize lateness problem, we still have a single resource that can only run
one job at a time. However, there are some differences from our original setup. First, we are
required to run all of the jobs. Given that some jobs might have conflicts, in order to make this
possible our jobs now have more flexibility. In particular:

• All jobs are available to start running any time after time 0.

• Each job j has a deadline d(j). This is the time by which the job would like to finish running,
but we are allowed to let it finish later.

• Each job j has a size x(j). This is the amount of (contiguous) time for which the job must
use the resource.

• Each job j has finish time f(j). This is the time at which the job is done using the resource,
and it depends on the schedule we choose.

• Each job j has a lateness `(j). This is the time by which the job violates its deadline:
`(j) = (f(j) − d(j))+. The notation (y)+ means “take the positive part of y”: that is, if
f(j)− d(j) is negative, the lateness is 0.

For example, if we have a job j with arrival time a(j) = 2, deadline d(j) = 6, and size x(j) = 3,
we could start running the job at time 3, in which case its finish time would be f(j) = 6 and the
deadline is violated, so the job has lateness `(j) = 0. We could also start running the job at time 5,
in which case its finish time would be f(j) = 8 and the deadline is violated with lateness l(j) = 2.

In the scheduling to minimize lateness problem, our goal is to come up with a schedule that gives
start times s(j) for all of the jobs j ∈ J , and that minimizes the maximum lateness across all jobs.
We have the following:

• Input: A set of jobs J , where for each job j ∈ J we are told the arrival time a(j), the
deadline d(j), and the size x(j).

• Output: A schedule S of start times s(j) for all jobs j ∈ J that satisfies the following:

– For each job j, s(j) ≥ a(j).

– At most one job is using the resource at any given time.

– For each job j, f(j) = s(j)+x(j) (that is, the job is scheduled for a contiguous stretch
of time).

– The maximum lateness Lmax = maxj∈J `(j) is minimized.

3. Fractional knapsack. Imagine you are a thief and you are trying to steal some items. Unfor-
tunately you can’t take them all because you have a backpack that can only hold up to W pounds.
There are n total items that you’re interested in, and each item i has some positive integer weight
wi. Additionally, each item has a positive integer value vi, and you would like to steal as much
value as you can, while remaining within the weight constraint of your backpack. You are allowed
to take a fractional amount pi of an item (think of the items as being something like gold powder,
rather than gold ingots). For the fractional knapsack problem, we have:

• Input: A set of n items, where each item i has a weight wi and a value vi, and a total capacity
W that is the maximum weight your backpack can hold.

• Output: A fraction pi ∈ [0, 1] for each item i that indicates what fraction of the item
you are stealing. The total value of the stolen items in your backpack, V =

∑n
i=1 vipi,

should be maximized, subject to the constraint that the total weight in your backpack,
WB =

∑n
i=1wipi, must be less than the capacity of your backpack, W .

Challenge: What if the items were gold ingots rather than gold powder? That is, suppose that
instead of being allowed to take a fractional amount of each item, we can either take all of the item
or none of it. Does a greedy algorithm still work?

