
COSC 311: ALGORITHMS

HW5: NP-COMPLETENESS

Due Friday, December 8, 12pm

Please type up your solutions (you may hand-draw pictures if needed). If you discuss any of
the problems with your classmates, please note at the top of your submission with whom you
consulted.

1 Set Packing
The Set Packing problem is defined as follows:
Input:

• A set U consisting of n elements

• m subsets of U , S1, . . . , Sm

• A positive integer k

Output: Is there a collection of at least k subsets such that no two subsets intersect?

1) Generalizing Independent Set. The Set Packing problem can be seen as a generalization of
Independent Set. In the Independent Set problem, we want to find a subset of nodes such that
none of the nodes in our set are connected by an edge. Set Packing doesn’t make any assumptions
that the elements are organized into a graph structure or that conflicts between elements are ex-
plicitly encoded as edges. Nonetheless, both problems involve choosing a conflict-free set of items.

a) Prove that Independent Set is polynomial-time reducible to Set Packing. What is the runtime of
your reduction?

b) Show how your reduction from part (a) turns the following instance of Independent Set, with
k = 2, into an instance of Set Packing:

1

https://kgardner.people.amherst.edu/courses/f17/cosc311/
https://kgardner.people.amherst.edu/courses/f17/cosc311/hw5/hw5.pdf

2) A Hard Scheduling Problem. In the Interval Scheduling problem, we had a set of jobs, each
with a specified start time and finish time, and a single processor; our goal was to schedule as many
jobs as possible without any conflicts. We saw in class that the Interval Scheduling problem can be
solved in polynomial time using a greedy algorithm that always chooses the job with the earliest
finish time.

Suppose that instead of requiring a single interval of processing time, each job instead specifies a
set of intervals during which it requires the processor. For example, job j might require the proces-
sor from 9-10am and from 1-2pm. As before, we have a single processor and we want to schedule
as many jobs as possible without conflicts. If you schedule job j, you must give it all time intervals
that it requires. Hence you cannot schedule any other job from 9-10 or from 1-2, but you could
still schedule other jobs at any other time, including the interval from 10am-1pm.

Specifically, the Multiple Interval Scheduling problem is defined as follows:
Input:

• A set J of jobs, where |J | = n

• For each job j ∈ J , a set of time intervals during which job j requires the processor

• A positive integer k

Output: Is it possible to schedule at least k jobs such that no two jobs conflict?

Your job is to show that Multiple Interval Scheduling is NP-complete. Specifically:

a) Show that Multiple Interval Scheduling is in NP.

b) Give a polynomial-time reduction from Set Packing to Multiple Interval Scheduling. What is
the runtime of your reduction?

c) Show how your reduction turns the following instance of Set Packing, with k = 3, into an
instance of Multiple Interval Scheduling:

2

2 Satisfiability
3) Not-All-Equal 3-SAT. It turns out that there are many variants on boolean satisfiability prob-
lems. We initially decided to work with 3-SAT instead of SAT because its additional structure
(requiring each clause to have three terms instead of any number of terms) was slightly easier to
work with. In some cases, it helps to consider even further variants on the standard satisfiability
problem. One such variant is Not-All-Equal 3-SAT. As you might expect based on its name, in
Not-All-Equal 3-SAT we are trying to satisfy a set of clauses, each of length 3, where at least one
term in each clause must be set to false. Specifically, we have:

Input:

• A set of variables X = {x1, . . . , x`}

• A set of clauses C1, . . . , Ck, each of length 3

Output: Is there a satisfying assignment such that for each clause, the term assignments are not all
equal (i.e., at least one term is set to false)?

For example, consider the conjunction

(x1 ∨ x̄2 ∨ x3) ∧ (x1 ∨ x4 ∨ x̄5).

The assignment x1 = x3 = x4 = x5 = true, x2 = false is not a NAE satisfying assign-
ment because in the first clause, all three terms x1, x̄2, and x3 are set to true. The assignment
x3 = x4 = x5 = true, x1 = x2 = false is a NAE satisfying assignment.

Now considering a seemingly unrelated problem: that of finding cuts in a graph. We know how to
solve the Min Cut problem efficiently using the Max-Flow Min-Cut Theorem. But what about the
flip side? In the Max Cut problem, our goal is to find a cut in a graph that has the highest capacity
possible. Specifically, we define the k-Cut problem as follows:

Input:

• An undirected, weighted graph G = (V,E), where |V | = n and |E| = m

• For each edge e ∈ E, a positive capacity c(e)

• A positive number k

Output: Is there a cut of G that has capacity at least k?

a) While we have described k-Cut as a decision problem, there is a related optimization problem,
Max Cut, that asks for the maximum capacity of any cut in the graph. Suppose we had an algo-
rithm A(G, k) that could solve k-Cut in polynomial time. How could we use A to solve Max Cut
in polynomial time in n and m? (You may assume that edge capacities are polynomial in n and m.)

b) Unfortunately, we are unlikely to ever find a polynomial time algorithm to solve k-Cut. Use the
fact that NAE-3-SAT is NP-complete to prove that k-Cut is NP-complete.

3

4) Cliques. In an undirected graph, a k-clique is a subset S consisting of k nodes such that every
node in S has an edge to every other node in S. For example, in the graph below the set of nodes
{w, x, y, z} forms a 4-clique.

The k-clique problem is defined as follows:
Input:

• An undirected, unweighted graph G = (V,E)

• A positive integer k

Output: Does G contain a k-clique?

Prove that k-clique is NP-complete (Hint: use the fact that 3-SAT is NP-complete).

3 Submission
This assignment is due on Friday, December 8, at 12pm. Please type up your solutions and

bring a hard copy of your typed responses to submit in class.

4

	Set Packing
	Satisfiability
	Submission

