
Shortest Paths: Dijkstra’s 

Algorithm



SSSP: Context

● Finding the shortest path from a source to goal, or source to every node

● Google/Apple maps



Recall: Breadth-First Search

● Finds a path of fewest edges from a source to every reachable node in the 

graph

S

B

A

C

D

I

D*



Recall: Breadth-First Search

● Finds a path of fewest edges from a source to every reachable node in the 

graph

S

B

A

C

D

I

Destination Path Path 

length

S [S] 0

A [S, A] 1

B [S, A, B] 2

C [S, D, C] 2

D [S, D] 1

I none ∞



Introduce: Weighted Graphs

● Each edge has a weight, or cost, associated with it

S

B

A

C

D

1

1

1
1

1

I

Destination Path Path cost

S [S] 0

A [S, A] 1

B [S, A, B] 2

C [S, D, C] 2

D [S, D] 1

I none ∞



Introduce: Weighted Graphs

● Edge weight could represent a time cost, financial cost, or a relation between 

two nodes

SEA

BDL

ATL

CLE

DUB

4.18

9.56

6.681.13

1.82

Destination Path Path cost

SEA [S] 0

ATL [S, A] 4.18

BDL [S, A, B] 6.00

CLE [S, A, B C] 7.13

DUB [S, D] 9.56

I none ∞



Problem: Breadth-First Search on Weighted Graphs

● BFS is not designed to consider edge weights!

SEA

BDL

ATL

CLE

DUB

4.18

9.56

6.681.13

1.82

Actual shortest 

path
BFS path



Solution: Dijkstra’s Algorithm

● Explore nodes in a greedy, shortest-path-first manner

● Key feature: explore (dequeue/pop) the closest node not yet explored.



Pseudocode: With Inefficiencies

● Overview of pseudocode



Pseudocode: Addressing Inefficiencies

● Use your Data Structures… 



Recall: PriorityQueue (Min-Heap Implementation)

● add(Object key, int priority)^ - O(log(n))

● extractMin() - O(log(n))

● decreaseKey(Object key, int newPriority)^ - O(log(n))*



GYHD: Example

S

A

B

C

E

D

i

5

15

10

3

2 7

6

4

1

Destination Cost Parent

S 0 null

A

B

C

D

E

i

Assuming S is the source



Conditions for Dijkstra’s

● No negative cycles; a negative cycle will always be a problem

● In fact, no negative edges; a negative edge will sometimes be a problem

● GYHD: come up with a graph that has no negative cycles, has a negative 

edge, where Dijkstra’s algorithm would not find the shortest path from a 

source to a destination



Counterexample

S B D

A

-100

101

50

5

1



If Time: Java implementation

● compareTo(Node other) vs. compare(Node a, Node b)

● Cats

● Time complexity and ease of implementation



Finally

● Thank you!

● PLEASE take survey on teaching feedback - will send to you shortly


