Shortest Paths: Dijkstra’s
Algorithm




SSSP: Context

e Finding the shortest path from a source to goal, or source to every node
e Google/Apple maps



Recall: Breadth-First Search

e Finds a path of fewest edges from a source to every reachable node in the
graph




Recall: Breadth-First Search

e Finds a path of fewest edges from a source to every reachable node in the

graph

0

Destination

Path

Path

length
S [S] 0
A [S, Al 1
B [S, A, B] 2
C [S, D, C] 2
D [S, D] 1

none




Introduce: Weighted Graphs

Each edge has a weight, or cost, associated with it

Destination

Path

[S]

[S, Al
[S, A, B]
[S, D, C]
[S, D]

none

Path cost



Introduce: Weighted Graphs

Edge weight could represent a time cost, financial cost, or a relation between

two nodes

Destination

SEA

ATL

BDL

CLE

DuUB

Path

[S]

[S, Al

[S, A, B]
[S, A BC]
[S, D]

none

Path cost

4.18

6.00

7.13

9.56



Problem: Breadth-First Search on Weighted Graphs

e BFS is not designed to consider edge weights!

1 procedure BFS(G,start v):
2 let 5 be a queue

3 S.enqueue(start v)

4 while 5 is not empty
5 v = 5.dequeue(}
6
7
8

if v is the goal:
return v 1.82
for all edges from v to w in G.adjacentEdges(v) do

g if w is not labeled as discovered:
10 label w as discovered
11 w.parent = v @

12 S.enqueue(w)



Solution: Dijkstra’s Algorithm

e Explore nodes in a greedy, shortest-path-first manner
e Key feature: explore (dequeue/pop) the closest node not yet explored.



Pseudocode: With Inefficiencies

e Overview of pseudocode

1 Dijkstra(Graph, source):

2

3 create vertex list Q

4

5 for each vertex v in Graph:

6 v.dist = INFINITY //dist represents distance from source
7 v.parent = null

8 add v to Q

18 source.dist = @

11

12 while Q is not empty:

13 u = vertex in Q with smallest "dist"
14

15 remove u from Q

16

17 for each neighbor v of u: // only v that are still in Q
18 alt = u.dist + weight(ju, v)

19 if alt < v.dist:

20 v.dist = alt

21 v.parent = u

22

23 // return depends on the application



Pseudocode: Addressing Inefficiencies

e Use your Data Structures...

1 function Dijkstra(Graph, source):

2

3 create vertex set Q

4

5 source.dist = @

6 for each vertex v in Graph:

7 v.dist = INFINITY

8 v.prev = null

18 Q.addwithPriority(v, v.dist)

11

12 while Q@ is not empty:

13

14 u = Q.extractMin() // 0(log(n})
15

16

17 for each neighbor v of u: // only v that are still in Q
18 alt = u.dist + weight(u, v)
19 if alt < v.dist:
20 v.dist = alt
21 v.parent = u
22 0.decreasePriority(v, v.dist) //0(log(n)) if we can find it quickly
23

24 // return depends on the application |



Recall: PriorityQueue (Min-Heap Implementation)

e add(Object key, int priority)* - O(log(n))
e extractMin() - O(log(n))
e decreaseKey(Object key, int newPriority)™ - O(log(n))*



GYHD: Example

Assuming S is the source

Destination

Cost

Parent

S

0

null




Conditions for Dijkstra’s

e No negative cycles; a negative cycle will always be a problem

e In fact, no negative edges; a negative edge will sometimes be a problem

e GYHD: come up with a graph that has no negative cycles, has a negative
edge, where Dijkstra’s algorithm would not find the shortest path from a

source to a destination



Counterexample

-100

101




If Time: Java implementation

® compareTo (Node other) VS. compare (Node a, Node Db)
e C(Cats
e Time complexity and ease of implementation



Finally

e Thank youl!
e PLEASE take survey on teaching feedback - will send to you shortly



