
COSC-211: DATA STRUCTURES

HW6: SCRABBLE HELPER

Due Thursday, April 11, 11:59pm

Reminder regarding intellectual responsibility: This is an individual assignment, and the work
you submit should be your own. Do not look at anyone else’s code, and do not show anyone your
code (except for me and the course TAs). You can (and should) look up the Java API documentation
for any classes you’re considering using in this assignment. Do NOT look on the internet (or
anywhere else) for code that solves the problem in this assignment.

1 The Assignment
In the game Scrabble, players take turns placing tiles on a board to form words. Each player has a
set of seven letters in front of them, and must use these letters to form a word attached to the words
that already appear on the board. A key part of the game, thus, is finding anagrams: given a set of
letters, we want to find all possible words that can be made using those letters. For example, if our
letters are aemt, we could make any word in the set mate, meat, meta, tame, team.
(In the real game of Scrabble we’d also want to find shorter words like mat and eat, but for the
purposes of this assignment we’ll stick to words that use all of the specified letters.)

Your job in this assignment is to write a program to help a Scrabble player find anagrams. The
idea is that you’ll read a list of words from a text file, and group these words according to the set
of letters they use (so the set of words mate, meat, meta, tame, team should all be in
the same “group,” associated with the set of letters aemt).

Some specifications for how your program should run:

• Your program must be in a file called ScrabbleHelper.java.

• Your program must take as a command line argument the text file in which your list of words
is stored. That is, I should be able to run your program with the command:

java ScrabbleHelper myDictionary.txt

where the list of valid words is stored in the file myDictionary.txt.

• Your program should repeatedly prompt the user to enter a word, then print out all valid
words that are anagrams of the entered word, then ask the user if they want to test another
word. This process should continue until the user types “no”. For example:

Enter your letters:
team
mate meat meta tame team
Another?

1

https://kgardner.people.amherst.edu/courses/s19/cosc211/
https://kgardner.people.amherst.edu/courses/s19/cosc211/assignments/hw6/hw6.pdf


yes
Enter your letters:
life
feil fiel file lief life
Another?
yes
Enter your letters:
ear
aer are ear era rea
Another?
no

Notice that when the user types in life, the program does not print out words like eilf
or flie, because these are not valid words (i.e., they do not appear in the dictionary).

Some specifications for what your program should do:

• Read in all of the words from the specified text file. On Linux servers (e.g., remus/romulus)
there’s a dictionary stored in the file /usr/share/dict/words. Macs and Windows
also have built-in dictionaries (feel free to Google to look up how to find them), or you can
use your own list of words (this might be helpful, in particular, for debugging).

• Store all of the valid words (i.e., the words that appear in your dictionary) in a HashMap (this
is a Java library; do not write your own HashMap class!). The key should be a String
containing the letters in a word sorted in alphabetical order, and the value should be a
Vector (or your preferred form of list) of all valid anagrams of that key. For example, the
<key,value> pair for our example above is <aemt, mate, meat, meta, tame,
team>.

• Once you have this HashMap of anagrams, you can start prompting the user to enter words,
as described above.

In contrast to many of our earlier assignments, your goal here is to practice using the data structures
and classes contained in existing Java libraries, rather than to build your own versions of these data
structures from scratch. You should look at the online documentation for any classes that you’re
considering using. In particular, you might find the HashMap, Vector, and String documentation
particularly helpful. But feel free to look up other classes!

1.1 Code Style and Formatting
Please pay attention to the style of your code as well as its functionality. Think of your code as you
would an essay: someone else is going to read it, and therefore you want it to be clear and easy to
read. Some things to consider:

• Comment your code! Note what each method and large block of code is supposed to do.
You don’t have to (and probably shouldn’t) comment every single line, but it’s very helpful

2

https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html
https://docs.oracle.com/javase/7/docs/api/java/util/Vector.html
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html


to use comments to give a “road map” to help someone reading your code understand what
you intend it to do.

• Use consistent indentation to indicate blocks of code. Your code should look like this:

public void myMethod() {
for(int i = 0; i < 10; i++) {

for(int j = 0; j < 10; j++) {
System.out.println(i + j);

}
}

}

and not:

public void myMethod() {
for(int i = 0; i < 10; i++) {
for(int j = 0; j < 10; j++) {

System.out.println(i + j);
}

}
}

Which do you think is easier to understand?

• Use helpful variable and method names. If a variable is meant to count the number of words
you’ve read in from a file, call it wordCount and not wxyz.

2 Submit your work
Make sure you test your code thoroughly before submitting it. Code that does not compile will
not receive credit.

Submit all of your Java files using either the submission web site or (from remus/romulus) the
command line:

$ cssubmit *.java

This assignment is due on Thursday, April 11, 11:59pm.

3


	The Assignment
	Code Style and Formatting

	Submit your work

