
COSC-211: DATA STRUCTURES

HW5: BINARY SEARCH TREES

Due Friday, March 29, 11:59pm

Reminder regarding intellectual responsibility: This is an individual assignment, and the work
you submit should be your own. Do not look at anyone else’s code, and do not show anyone your
code (except for me and the course TAs).

1 The Assignment

1.1 Binary Search Tree Implementation
In this assignment, you will write a binary search tree from scratch. Your tree should hold keys
of type String and values of type Integer (I encourage you to make your BST generic, but
you are not required to do so for this assignment). You can use the compareTo method in the
String class to determine which of two keys is larger.

Your tree should be in a class called BinarySearchTree.java (exactly like that, capitaliza-
tion and all). In this file, you should include the following methods:

1. A method called add that takes a String key and an Integer value as input and
inserts the <key, value> pair into the appropriate position in your tree. If key already
appears in the tree, the method should replace the existing value with the new value.

2. A method called remove that takes a String key as input and removes the associated
<key, value> pair from the tree. The method should return the value if it successfully
removed key from the tree, and it should return null if it did not remove key from the
tree (i.e., if key was not in the tree).

3. A method called lookup that takes a String key as input and determines whether key
appears in the tree. The method should return the associated value if the tree contains key
and null otherwise.

4. A method called inOrderTraverse that, when called on the root, prints all <key,
value> pairs in the tree in increasing order, with each pair appearing on a new line in
the format (key, value). This method should have no input parameters and should not
return anything.

Your methods must have exactly the names, input parameters, and return types specified above.

You might decide that you want to write additional methods, include fields, write additional classes
(for example, you probably will want to write a Node class as we discussed in class), or any other
number of things. This is all fine, provided that the four methods specified above do what they are
supposed to do. Any methods or fields that you add to the BinarySearchTree class should be
private.

1

https://kgardner.people.amherst.edu/courses/s19/cosc211/
https://kgardner.people.amherst.edu/courses/s19/cosc211/assignments/hw5/hw5.pdf


You likely will want to write some code to test your binary search tree before you submit it. This
code should be in a separate Java file; do not include test code in your BinarySearchTree.java.
Some things to think about when you are testing your code: What happens when you try to call
one of your methods on an empty tree? Does add work properly when you try to insert a key that
is already in the tree? Does removing the root work properly? This is not a comprehensive list of
cases to check; you are responsible for making sure that you tree always works as described above.

1.2 Word Counts
An interesting use for a dictionary is to count the number of occurrences of each word in a text
document. The idea is that a key represents a word, and its associated value is the number of times
the word appears in the document.

Your goal in this section is to write a program, called WordCount.java, that will perform this
task. Specifically, you will read through a text document, one word at a time (see Section 1.2.1
below for tips on how to do this). You should convert each word to lowercase (so that, for example,
“Hello” and “hello” are counted as the same word). If the word is not yet in your dictionary, add
a new <key, value> pair. If the word already appears in your dictionary, update its associated
word count value accordingly.

Your program should print out a list of all words that appear in the text file you read, in alphabetical
order, with their word count.

You can find a sample text file at:
https://kgardner.people.amherst.edu/courses/s19/cosc211/assignments/hw5/sample.txt.
This particular file contains the entire text of the novel “Pride and Prejudice,” by Jane Austen. You
can find lots of other text files to play with at Project Gutenberg (https://www.gutenberg.org/) (be
sure to use the ASCII text format, not the UTF-8 text format).

1.2.1 Reading from a file

One of the easier ways to read from a file involves using a Scanner. You can use the line:

Scanner sc = new Scanner(new File("myfile.txt"));

This will create a Scanner object that reads test out of the file called myfile.txt. The com-
mand sc.hasNext() checks whether there is anything else to read from the file, and the com-
mand sc.next() reads and returns a String containing the next word in the file.

In order to use the Scanner and File classes, you will need to import them at the top of your
program:

import java.util.Scanner;
import java.io.File;

You also will need to handle the possibility that an error could occur when reading from the file.
The easiest way to do this involves putting your code inside a try/catch block. This looks
something like the following:

2

https://kgardner.people.amherst.edu/courses/s19/cosc211/assignments/hw5/sample.txt
https://www.gutenberg.org/


try {
// whatever code uses the File class

}
catch (FileNotFoundException e) {

e.printStackTrace();
}

This piece of code says that we want to “try” to do whatever code is contained in the try block.
If, in the course of running this code, a FileNotFoundException occurs, we will move to
the catch block and execute the code in the catch block. In order to do this, we also have to
import the error that we’re catching:

import java.io.FileNotFoundException;

1.2.2 Working with Scanners

By default, Scanners are delimited by whitespace, meaning that a “word” is a unit of characters
separated by a space, tab, or newline. You may want to change the delimiters of the Scanner, for
example to remove punctuation. The command

sc.useDelimiter("([ˆ\\p{IsAlphabetic}ˆ\\p{IsDigit}]*\\s+
[ˆ\\p{IsAlphabetic}ˆ\\p{IsDigit}]*)|--");

will accomplish this. This command says to use as a delimiter any sequence of characters that fits
the following pattern:

• [ˆ\\p{IsAlphabetic}ˆ\\p{IsDigit}]*: zero or more (that’s the *) characters
that are not alphabetic (that’s the ˆ\\p{IsAlphabetic}; the ˆ is a negation and the
\\p{IsAlphabetic} identifies whether the character is a letter) and not a digit,

• \\s+: Followed by one or more whitespace characters (the \\s indicates whitespace, and
the + indicates one or more),

• [ˆ\\p{IsAlphabetic}ˆ\\p{IsDigit}]*: followed by zero or more characters
that are not alphabetic and not a digit.

(You can search the phrase “regular expressions” if you want to learn more about how to construct
and interpret this kind of pattern.)

Update 3/26/19: A few of you have noticed that the above delimiter doesn’t work properly for you;
instead of getting all words and no punctuation, you got all punctuation and no words. Obviously
that isn’t what we want! If you’re having this issue, please feel free to skip the delimiter entirely
and run the Scanner with its default delimiter, which separates words on white space. If you do
this, you’ll see some words with punctuation attached, so, for example, “hello” and “hello,” (with
a comma at the end) will be counted as different words.

Conrad suggested the following alternative delimiter, which worked properly for him:

sc.useDelimiter("(\\W*\\s+\\W*)|--");

Feel free to use this, any other variation that works for you, or no special delimiter at all.

3



2 Submit your work
Make sure you test your code thoroughly before submitting it. Code that does not compile will
not receive credit.

Submit all of your Java files using either the submission web site or (from remus/romulus) the
command line:

$ cssubmit *.java

This assignment is due on Friday, March 29, 11:59pm.

4


	The Assignment
	Binary Search Tree Implementation
	Word Counts
	Reading from a file
	Working with Scanners


	Submit your work

