
COSC-211: DATA STRUCTURES

HW3: ASYMPTOTIC ANALYSIS

Solutions

1. Rank the following functions from smallest to largest according to their big-O complexity. That
is, order them based on their asymptotic growth rate. For example, you could write n < n3 since
n ∈ O(n3), but n3 /∈ O(n). Some of the functions might be in the same big-O class. You do not
need to do any formal proofs.

n100 lg n 2n 2lgn 4
√
n n! 100n

Solution: From smallest to largest: O(4) ⊂ O(lg n) ⊂ O(
√
n) ⊂ O(100n) = O(2lgn) ⊂ n100 ⊂

O(2n) ⊂ O(n!)

2. Let f(n) = 3n2 + 5n− 12. Prove that f(n) ∈ O(n2).

Solution: Let c = 4 and n0 = 5. For n ≥ n0 = 5, we have n2 ≥ 25. Plugging into f(n), we have
that for n ≥ n0 = 5, 3n2 + 5n− 12 ≥ 3 · 25 + 5 · 5− 12 = 88 > 0. We also have:

3n2 + 5n− 12 < 3n2 + 5n

≤ 3n2 + n · n
= 4n2

= cn2,

where the first inequality results from adding 12, thereby increasing the expression, and the sec-
ond line results from the fact that n ≥ 5. We have shown that there exist positive constants c and
n0, namely c = 4 and n0 = 5, such that for all n ≥ n0, 0 ≤ f(n) ≤ cg(n). Hence f(n) ∈ O(g(n)).

3. Prove that O(n) ⊆ O(n2). The notation ⊆ means “is a subset of or equal to”. That is, we
want to show that every function in O(n) must also be in O(n2). [Hint: this is a “for all” claim.
Start by considering an arbitrary function f(n), where all you know about f(n) is that it’s in O(n).]

Solution: We begin with an arbitrary function f(n) ∈ O(n). From this, the definition of O(n)
tells us that there exist positive constants c and n0 such that for all n ≥ n0, 0 ≤ f(n) ≤ cn. Since
n0 > 0 and n0 is an integer, we can also say that n ≤ n2 for all n ≥ n0. Hence cn ≤ cn2 for
any positive constant c, and in particular for the constant c that we used in the definition of O(n)
above. Putting this together, we now have 0 ≤ f(n) ≤ cn ≤ cn2 for all n ≥ n0. But this is exactly
the definition of O(n2)! So we now know that f(n) must also be in O(n2).

Note that this argument didn’t require us to choose a specific function f(n). The argument works
for any function that happens to be in O(n).

4. Java’s Stack class provides a method called search. The search method takes an Object
as an input parameter and returns and int representing the location of that Object within the

1

https://kgardner.people.amherst.edu/courses/s19/cosc211/
https://kgardner.people.amherst.edu/courses/s19/cosc211/hw3/hw3.pdf


stack (the top of the stack is 1), or -1 if the Object isn’t in the stack.

Suppose we add a search method to our array-based Stack of Book objects and implemented
it as follows:

1 public int search(Book b) {
2 for (int i = 0; i < top; i++) {
3 if (booklist[i].equals(b)) return i+1;
4 }
5 return -1;

What is the worst case big-O runtime of search in terms of n (the number of items in the stack)?
What about the best case? Explain your answers.

Solution: The search function is O(n) in the worst case and O(1) in the best case.

Worst case: As soon as the if statement in line 3 evaluates to true (i.e., we find the book) the
method returns, so our worst case is when the input b isn’t in the stack. In this case, the body of the
for loop takes constant time (the call to equals in line 3, plus the comparison i < top and
the increment i++ in line 2, all constant time operations). The loop executes n times—i runs from
0 to top. So the entire loop in lines 2-4 takes O(1) ∗ O(n) = O(n) time. The return statement in
line 5 takes constant time, so overall we have O(n) +O(1) = O(n).

Best case: The best case is that the book we’re looking for is on the bottom of the stack (in position
0). In this case, we find the book on the first iteration of the for loop (when i is 0). All we do is set
i = 0, compare i < top, index into booklist, call equals, and return. All constant work:
the total runtime is O(1).

2


	Submit your work

