
COSC 311: ALGORITHMS

MINI 2 SOLUTIONS

Due Wednesday, September 19 in class

1. Asymptotic comparisons. Order the following functions from slowest-growing to fastest-
growing. Some of them may be equal (i.e., may belong to the same Θ class).

2n2 65n4321 lg n 1700n 1.5n n3 + 4n2 + 9000 n 1
1000

n3

Solution:

1. lg n

2. n and 1700n

3. 2n2

4. 1
1000

n3 and n3 + 4n2 + 9000

5. 65n4321

6. 1.5n

2. Analyzing algorithms. Suppose I wrote an expression, T (n), for the runtime of my algorithm,
and then I compared T (n) to some other functions as follows:

Which of the following claims are true about the worst-case performance of my algorithm? (More
than one claim may be true).

I. It’s Θ(f(n)).

II. It’s Ω(h(n)).

III. It’s O(g(n)), provided T (n) describes the runtime of the worst possible input.

IV. It’s O(g(n)).

1

https://kgardner.people.amherst.edu/courses/f18/cosc311/
https://kgardner.people.amherst.edu/courses/f18/cosc311/mini/mini2.pdf


V. It’s Θ(f(n)), provided T (n) describes the runtime of the worst possible input.

VI. It’s Ω(f(n)).

Solution: II, III, V, and VI are all true.

Some more detail: unless we’re told that T (n) describes the runtime of the worst possible input,
we don’t know what input it is talking about. It could be the runtime for the worst-case input, but
it also could be the runtime for the best-case input, or some other input in between.

In case I, we can see from looking at the graph that T (n) ∈ Θ(f(n)), but there could be some
other, worse input that produces a curve that grows much faster. So we can’t conclude that the
worst-case runtime is Θ(f(n)).

In case II, we can see from the graph that T (n) ∈ Ω(h(n)). T (n) might not describe the worst-case
input, but the worst-case input certainly is at least as bad as T (n), so the worst case must also be
Ω(h(n)).

In case III, we are told that T (n) is the worst case, and we can see from the graph that T (n) ∈
O(g(n)).

In case IV, as in case I, we don’t know whether T (n) is the worst-case input, so there could be
some other worse input that grows faster than g(n).

In case V, we are told that T (n) is the worst case, and since T (n) falls between c2f(n) and c2f(n)
we know that T (n) ∈ Θ(f(n)).

In case VI, as in case II, we know that T (n) is lower bounded by c3f(n) so T (n) ∈ Ω(f(n)). There
could be a worse input that grows faster than T (n), and that input would also be lower bounded by
c3f(n).

2



3. Writing recurrences. Here’s an algorithm that you may (or may not) have seen before:

BinarySearch(A, x, i, j) // A is an array of length n
if j < i return false
mid = (i+j)/2
if A[mid] == x return true
if A[mid] > x return BinarySearch(A, x, i, mid-1)
else return BinarySearch(A, x, mid+1, j)

Write a recurrence for T (n), the runtime of BinarySearch. You do not need to solve your
recurrence (but feel free to if you want the practice!)

Solution:

T (n) = T (n/2) + O(1)

Explanation: Let n be the size of the array on any given iteration of the recursive function. Then
each time through the function, you will perform a comparison and (if you haven’t found x) search
an array of seize n/2.

This recurrence turns out to be T (n) = O(log(n)).

3


