COSC 311: ALGORITHMS
MINI 2 SOLUTIONS
Due Wednesday, September 19 in class

1. Asymptotic comparisons. Order the following functions from slowest-growing to fastest-
growing. Some of them may be equal (i.e., may belong to the same © class).
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Solution:

1. lgn

2. nand 1700n

3. 2n?

4. W” and n> + 4n? + 9000

5. 65n 132!

6. 1.5"

2. Analyzing algorithms. Suppose I wrote an expression, 7'(n), for the runtime of my algorithm,
and then I compared 7'(n) to some other functions as follows:
crg(n)

cof ()

T(m)

c3f(n)
c,h(n)

Which of the following claims are true about the worst-case performance of my algorithm? (More
than one claim may be true).

L It's ©(f(n)).
IL It's Q(h(n)).
II. 1t’s O(g(n)), provided T'(n) describes the runtime of the worst possible input.
IV. It’'s O(g(n)).
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V. It’'s O(f(n)), provided T'(n) describes the runtime of the worst possible input.
VL 1t’s Q(f(n)).

Solution: II, III, V, and VI are all true.

Some more detail: unless we’re told that 7'(n) describes the runtime of the worst possible input,
we don’t know what input it is talking about. It could be the runtime for the worst-case input, but
it also could be the runtime for the best-case input, or some other input in between.

In case I, we can see from looking at the graph that 7'(n) € O(f(n)), but there could be some
other, worse input that produces a curve that grows much faster. So we can’t conclude that the
worst-case runtime is O(f(n)).

In case II, we can see from the graph that 7'(n) € Q(h(n)). T'(n) might not describe the worst-case
input, but the worst-case input certainly is at least as bad as 7'(n), so the worst case must also be

Q(h(n)).

In case III, we are told that 7'(n) is the worst case, and we can see from the graph that 7'(n) €

O(g(n)).

In case IV, as in case I, we don’t know whether 7'(n) is the worst-case input, so there could be
some other worse input that grows faster than g(n).

In case V, we are told that 7'(n) is the worst case, and since T'(n) falls between ¢, f(n) and co f (n)
we know that T'(n) € ©(f(n)).

In case VI, as in case II, we know that 7'(n) is lower bounded by c3 f(n) so T'(n) € Q(f(n)). There
could be a worse input that grows faster than 7'(n), and that input would also be lower bounded by

csf(n).



3. Writing recurrences. Here’s an algorithm that you may (or may not) have seen before:

BinarySearch(d, x, i, j) // A is an array of length n
if j < 1 return false

mid = (i+73)/2
if A[mid] == x return true
if A[mid] > x return BinarySearch (A, x, i, mid-1)

else return BinarySearch (A, x, mid+1, J)

Write a recurrence for 7'(n), the runtime of BinarySearch. You do not need to solve your
recurrence (but feel free to if you want the practice!)

Solution:

T(n)=T(n/2)+ O(1)

Explanation: Let n be the size of the array on any given iteration of the recursive function. Then
each time through the function, you will perform a comparison and (if you haven’t found z) search

an array of seize n/2.

This recurrence turns out to be 7'(n) = O(log(n)).



