
COSC 311: ALGORITHMS

HW3: GREEDY AND DYNAMIC PROGRAMMING

Due Friday, October 26 in class

1 Submission and Collaboration
This assignment is due on Friday, October 26 at the start of class; bring a hard copy of your typed
responses to submit in class. Each problem must be on a separate sheet of paper, with your
name and section number at the top of the page. If you use more than one sheet of paper for
an individual problem, please staple together those pages. There is no need for you to rewrite the
problems on your submission.

In accordance with this course’s intellectual responsibility policy, you are welcome to discuss the
problems with other students who are currently taking the course, but you must write up your
solutions individually. Please note at the top of your submission with whom you discussed each
problem.

2 Problems
Problem 1: Scheduling to minimize response time.
In many computer systems settings, all of the jobs that are submitted to a server are allowed to run
(unlike the interval scheduling problem, in which only a subset of the jobs can run), and the goal
is to ensure that all jobs complete running as quickly as possible. The response time problem is
defined as follows:

Input: a set J consisting of n jobs, where each job j has an arrival time a(j) (the earliest time at
which job j is allowed to start running—job j can start at any time at or after a(j)) and a size x(j)
(the amount of time for which job j must occupy the server continuously).

Output: a schedule of start times s(j) for all jobs j in J , such that:
(1) The schedule is feasible, meaning it satisfies the following properties:

• For all jobs j, s(j) ≥ a(j) (a job can only start after it has arrived).

• Let f(j) be job j’s finish time (the time at which it completes running). For all jobs j, we
must have f(j) = s(j)+x(j) (jobs cannot be interrupted; each job must run for a contiguous
block of time).

• For any pair of jobs i and j, either f(i) ≤ s(j) or f(j) ≤ s(i) (jobs cannot overlap; the
server can only run one job at a time).

(2) The schedule minimizes overall response time, T . A job j’s response time is defined to be
t(j) = f(j) − a(j) (the time that passes between its arrival time and its finish time). The overall
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response time is T =
∑n

j=1 t(j). Our goal is to find a feasible schedule that minimizes T .

(a) Assume that all jobs arrive at time 0, so a(j) = 0 for all j. Give a greedy algorithm that finds a
schedule that minimizes the overall response time.

(b) Here’s an example input (continue to assume that a(j) = 0 for all jobs j):

j 1 2 3 4 5
x(j) 4 8 3 1 5

Show what happens when you run your algorithm on this input (i.e., what schedule does your al-
gorithm produce, and in what order are jobs added to this schedule?)

(c) In terms of n (the number of jobs in J), what is the runtime of your algorithm?

(d) Explain how you know that your algorithm produces an optimal solution.

(e) [Challenge*] Now let’s relax the assumption that all jobs arrive at time 0, and say that each
job j arrives at some time a(j) ≥ 0. We only become aware of job j at its arrival time, so at all
times we can only make our scheduling decisions based on our knowledge of the jobs that already
have arrived. We also remove the constraint that each job must run for a contiguous block of time,
so that now we are allowed to preempt jobs (that is, pause a job, run a different job or jobs for a
while, and then restart the job that was paused). Does your algorithm from part (a) still give the
optimal solution? If so, explain why. If not, give a counterexample and suggest an algorithm that
might perform better.
*Note about challenge problem: This part of the problem will be worth 1 point out of 20. This is
meant to give you an incentive to think about it if you have time, but still be a small enough value
that you can skip it without significant penalty if you don’t.

2) Filling knapsacks.
Imagine you are a thief and you are trying to steal some items. Unfortunately you can’t take them
all because you have a knapsack that can only hold up to W pounds. There are n total items that
you’re interested in, and each item i has some positive integer weight wi, in pounds. Additionally,
each item has a positive integer value vi, and you would like to steal as much value as you can,
while remaining within the weight constraint of your knapsack. You are allowed to take a frac-
tional amount pi of an item, where pi is between 0 and 1 (0 meaning you take none of the item, 1
meaning you take all of the item, 0.5 meaning that you take half of the item, etc.; think of the items
as being something like gold powder, rather than gold ingots). The fractional knapsack problem is
defined as follows:

Input: a set of n items, where each item i has a weight wi and a value vi, and a total capacity W
that is the maximum weight your knapsack can hold.

Output: a fraction pi, 0 ≤ pi ≤ 1, for each item i that indicates what fraction of the item you are
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stealing, such that:
(1) The total weight of the stolen items fits within the capacity of your backpack:

∑n
i=1 piwi ≤ W .

(2) The total value of the stolen items in your backpack, V =
∑n

i=1 pivi, is maximized.

(a) Give a greedy algorithm to solve the fractional knapsack problem optimally (i.e., your algo-
rithm should result in the most value possible in the knapsack, while staying within the weight
constraint).

(b) Here’s a set of items:

i 1 2 3 4
wi 15 6 9 2
vi 15 24 27 7

Show what happens when you run your algorithm on this input with W = 10 (i.e., what fraction
of each item does your algorithm tell you to steal, and in what order are the fractions of items
determined?)

(c) In terms of n (the number of items), what is the runtime of your algorithm?

(d) Explain how you know that your algorithm produces an optimal solution.

3) Rod cutting.
Imagine that you have decided to open a small business, and your grand entrepreneurial idea is
to take steel rods of length n, cut up the rods into smaller pieces, and sell the pieces. You know
something about the market for steel rods, so you know that you can sell a piece of length i for
price pi, where pi ≤ pj if i < j (a longer piece is worth at least as much as a shorter piece). Your
goal is to figure out how best to cut up the length-n rods in order to make the highest profit. The
rod cutting problem is defined as follows:

Input: a length n, and, for all (positive, integer) i ≤ n, a price pi for which you can sell a rod of
length i.

Output: a “decomposition” of the length-n rod into shorter pieces so that the total price of all of
the shorter pieces is maximized.

(a) There is no greedy algorithm for this problem that is guaranteed to be optimal on all inputs.
Give a dynamic programming algorithm that is guaranteed to solve the rod cutting problem opti-
mally for all inputs.

(b) Here’s an example for a rod of length 5:

i 1 2 3 4 5
pi $2 $2 $12 $15 $16
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Show what happens when you run your algorithm on this input (i.e., what solution does your algo-
rithm find, and how does it go about finding this solution?)

(c) In terms of n (the length of the original rod), what is the runtime of your algorithm?

(d) Explain how you know that your algorithm produces an optimal solution.
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