
Practice with Induction
1. Prove that for all n > 0,

∑n
i=1 i =

n(n+1)
2

.

Solution: Base case: n = 1.
When n = 1, we have

n∑
i=1

i =
1∑

i=1

i = 1 =
1(2)

2
.

Inductive hypothesis: For some n ≥ 1,
∑n

i=1 i =
n(n+1)

2
.

Inductive step: Assume the inductive hypothesis holds for n. We will show that
∑n+1

i=1 i = (n+1)(n+2)
2

.
We have:

n+1∑
i=1

i =
n∑

i=1

i+ (n+ 1)

=
n(n+ 1)

2
+ n+ 1

=
n(n+ 1) + 2(n+ 1)

2

=
(n+ 1)(n+ 2)

2

as desired. Here the second line follows from the inductive hypothesis. Hence we have that for all
n > 0,

∑n
i=1 i =

n(n+1)
2

.

2. Prove that for all n > 0,
∑n

i=0 x
i = 1−xn+1

1−x if |x| < 1. This is called the finite geometric series.

Solution: Base case: n = 1.
When n = 1, we have

n∑
i=0

xi =
1∑

i=0

xi = x0 + x1 = 1 + x =
(1 + x)(1− x)

1− x
=

1− x2

1− x

as desired.

Inductive hypothesis: For some n ≥ 1,
∑n

i=0 x
i = 1−xn+1

1−x .

Inductive step: Assume the inductive hypothesis holds for n. We will show that
∑n+1

i=0 xi = 1−xn+2

1−x .



We have:

n+1∑
i=0

xi =
n∑

i=0

xi + xn+1

=
1− xn+1

1− x
+ xn+1

=
1− xn+1 + (1− x)xn+1

1− x

=
1− xn+1 + xn+1 − xn+2

1− x

=
1− xn+2

1− x

as desired. Here the second line follows from the inductive hypothesis. Hence we have that for all
n > 0,

∑n
i=0 x

i = 1−xn+1

1−x .

Note that if we take the limit of this series as n → ∞, we get
∑∞

i=0 x
i = 1

1−x . This is called the
infinite geometric series, and is another useful summation identity.

3. Let T (n) =

{
T (n/2) + c1n n > 1

c2 n = 1
. Prove that T (n) ∈ O(n).

Solution: Let c = 2c1 + c2 and n0 = 2. We will show that for all n ≥ n0, T (n) ≤ cn.
Base case: n=2.
When n = 2, we have

T (2) = T (2/2) + 2c1 = T (1) + 2c1 = c2 + 2c1 = c ≤ 2c.

Inductive hypothesis: For some n ≥ 2, T (n) ≤ cn.

Inductive step: Assume the inductive hypothesis holds for n. We will show that T (2n) ≤ 2cn. We
have:

T (2n) = T (2n/2) + 2c1n

= T (n) + 2c1n

≤ cn+ 2c1n

= (2c1 + c)n

≤ (4c1 + c2)n

≤ (4c1 + 2c2)n

= 2cn

as desired. Here the third line follows from the inductive hypothesis and the fifth line follows from
plugging in c = 2c1 + c2. Hence we have shown that there exists a c (namely c = 2c1 + c2) and



an n0 (namely n0 = 2) such that for all n ≥ n0, T (n) ≤ 2cn. Hence by definition, T (n) ∈ O(n).

4. Let T (n) =

{
2T (n− 1) + n n > 1

1 n = 1
. Prove that T (n) = 2n+1 − n− 2.

Solution: Base case: n = 1.
When n = 1, we have

T (1) = 1 = 22 − 1− 2.

Inductive hypothesis: For some n ≥ 1, T (n) = 2n+1 − n− 2.

Inductive step: Assume the inductive hypothesis holds for n. We will show that T (n + 1) =

2n+2 − (n+ 1)− 2. We have:

T (n+ 1) = 2T (n) + (n+ 1)

= 2(2n+1 − n− 2) + (n+ 1)

= 2n+2 − 2n− 4 + n+ 1

= 2n+2 − n− 3

= 2n+2 − (n+ 1)− 2

as desired. Hence we have shown that for all n ≥ 1, T (n) = 2n+1 − n− 2.


