## **Practice with Induction**

1. Prove that for all n > 0,  $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ .

**Solution:** Base case: n = 1.

When n = 1, we have

$$\sum_{i=1}^{n} i = \sum_{i=1}^{1} i = 1 = \frac{1(2)}{2}.$$

Inductive hypothesis: For some  $n \ge 1$ ,  $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ .

Inductive step: Assume the inductive hypothesis holds for n. We will show that  $\sum_{i=1}^{n+1} i = \frac{(n+1)(n+2)}{2}$ . We have:

$$\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n+1)$$

$$= \frac{n(n+1)}{2} + n + 1$$

$$= \frac{n(n+1) + 2(n+1)}{2}$$

$$= \frac{(n+1)(n+2)}{2}$$

as desired. Here the second line follows from the inductive hypothesis. Hence we have that for all  $n>0, \sum_{i=1}^n i=\frac{n(n+1)}{2}$ .  $\square$ 

2. Prove that for all n > 0,  $\sum_{i=0}^{n} x^i = \frac{1-x^{n+1}}{1-x}$  if |x| < 1. This is called the finite geometric series.

**Solution:** Base case: n = 1.

When n = 1, we have

$$\sum_{i=0}^{n} x^{i} = \sum_{i=0}^{1} x^{i} = x^{0} + x^{1} = 1 + x = \frac{(1+x)(1-x)}{1-x} = \frac{1-x^{2}}{1-x}$$

as desired.

Inductive hypothesis: For some  $n \ge 1$ ,  $\sum_{i=0}^{n} x^i = \frac{1-x^{n+1}}{1-x}$ .

Inductive step: Assume the inductive hypothesis holds for n. We will show that  $\sum_{i=0}^{n+1} x^i = \frac{1-x^{n+2}}{1-x}$ .

We have:

$$\sum_{i=0}^{n+1} x^i = \sum_{i=0}^n x^i + x^{n+1}$$

$$= \frac{1 - x^{n+1}}{1 - x} + x^{n+1}$$

$$= \frac{1 - x^{n+1} + (1 - x)x^{n+1}}{1 - x}$$

$$= \frac{1 - x^{n+1} + x^{n+1} - x^{n+2}}{1 - x}$$

$$= \frac{1 - x^{n+2}}{1 - x}$$

as desired. Here the second line follows from the inductive hypothesis. Hence we have that for all  $n>0, \sum_{i=0}^n x^i=\frac{1-x^{n+1}}{1-x}$ .  $\square$ 

Note that if we take the limit of this series as  $n \to \infty$ , we get  $\sum_{i=0}^{\infty} x^i = \frac{1}{1-x}$ . This is called the infinite geometric series, and is another useful summation identity.

3. Let 
$$T(n) = \begin{cases} T(n/2) + c_1 n & n > 1 \\ c_2 & n = 1 \end{cases}$$
. Prove that  $T(n) \in O(n)$ .

**Solution:** Let  $c = 2c_1 + c_2$  and  $n_0 = 2$ . We will show that for all  $n \ge n_0$ ,  $T(n) \le cn$ .

Base case: n=2.

When n = 2, we have

$$T(2) = T(2/2) + 2c_1 = T(1) + 2c_1 = c_2 + 2c_1 = c \le 2c.$$

Inductive hypothesis: For some  $n \ge 2$ ,  $T(n) \le cn$ .

Inductive step: Assume the inductive hypothesis holds for n. We will show that  $T(2n) \leq 2cn$ . We have:

$$T(2n) = T(2n/2) + 2c_1n$$

$$= T(n) + 2c_1n$$

$$\leq cn + 2c_1n$$

$$= (2c_1 + c)n$$

$$\leq (4c_1 + c_2)n$$

$$\leq (4c_1 + 2c_2)n$$

$$= 2cn$$

as desired. Here the third line follows from the inductive hypothesis and the fifth line follows from plugging in  $c = 2c_1 + c_2$ . Hence we have shown that there exists a c (namely  $c = 2c_1 + c_2$ ) and

an  $n_0$  (namely  $n_0=2$ ) such that for all  $n\geq n_0$ ,  $T(n)\leq 2cn$ . Hence by definition,  $T(n)\in O(n)$ .

4. Let 
$$T(n) = \begin{cases} 2T(n-1) + n & n > 1 \\ 1 & n = 1 \end{cases}$$
. Prove that  $T(n) = 2^{n+1} - n - 2$ .

**Solution:** Base case: n = 1.

When n = 1, we have

$$T(1) = 1 = 2^2 - 1 - 2.$$

Inductive hypothesis: For some  $n \ge 1$ ,  $T(n) = 2^{n+1} - n - 2$ .

Inductive step: Assume the inductive hypothesis holds for n. We will show that  $T(n+1) = 2^{n+2} - (n+1) - 2$ . We have:

$$T(n+1) = 2T(n) + (n+1)$$

$$= 2(2^{n+1} - n - 2) + (n+1)$$

$$= 2^{n+2} - 2n - 4 + n + 1$$

$$= 2^{n+2} - n - 3$$

$$= 2^{n+2} - (n+1) - 2$$

as desired. Hence we have shown that for all  $n \ge 1$ ,  $T(n) = 2^{n+1} - n - 2$ .