
Part I: Graph Coloring
At some point in your childhood, chances are you were given a blank map—of the United States,
of Africa, of the whole world—and you tried to color in each state or each country so that if two re-
gions shared a border, you used different colors for them. Maybe you tried to figure out how many
colors you needed. Could you color in the U.S. map using only three different colored crayons?
What if you had four colors?

In computer science, we call this question—at minimum, how many colors are needed so that no
two adjacent regions are the same color?—the Graph Coloring problem. The problem is formally
defined as follows:

Graph k-coloring
Input:

• An undirected, unweighted graph G = (V,E)

• A positive integer k

Output: Is it possible to color each node in G using at most k colors, such that if edge (u, v) exists,
then nodes u and v are different colors?

Note that graph k-coloring is a decision problem, not an optimization problem. But if we can solve
the decision problem, we can solve the corresponding optimization problem (what is the smallest
number of colors required?) by repeatedly solving the decision problem for different values of k.

For each of the graphs below, is the graph 2-colorable? 3-colorable? 4-colorable? Is there a simple
rule that tells you how many colors you will need?

2-colorable 3-colorable

4-colorable

There’s an easy rule for 2-coloring: a graph can be 2-colored if and only if it is bipartite. We can
easily check whether a graph is bipartite in time O(m+n) using depth-first search. For 3-coloring
and 4-coloring in general there is no easy rule. However, there is a special case: if a graph is planar
(meaning that it can be drawn in 2 dimensions such that no edges cross) then it is 4-colorable. This
is why you never need more than 4 crayons to color in a geographic map.



Recall from last time the 3-SAT problem:

3-SAT
Input:

• A set of boolean variables X = {x1, . . . , xn}

• A set of clauses C1, . . . , Ck, each of which is the disjunction of three of the variables in X

Output: Is the set of clauses satisfiable? That is, is there an assignment of value true or false to
each of the variables in X such that each of the k clauses evaluates to true?

On Wednesday, we found a reduction from 3-SAT to Independent Set. But often (in fact, usually) it
is possible to reduce the same problem to multiple different problems. One way of solving 3-SAT is
to turn an instance of 3-SAT into an instance of Independent Set, and then solving the Independent
Set problem. As we will see, another way of solving 3-SAT is to turn an instance of 3-SAT into
an instance of Graph 3-Coloring, and then solving the Graph 3-Coloring problem. That is, we will
show the following theorem:

Theorem 1. 3-SAT ≤P Graph 3-Coloring.

To prove this theorem, we will take an instance of 3-SAT and turn it into an

instance of 3-coloring .

Once we have proved this theorem, we will know that:

1. If 3-coloring can be solved in polynomial time, then so can 3-SAT .

2. If 3-SAT can’t be solved in polynomial time, then neither can 3-coloring .

To reduce from 3-SAT to Independent Set, we took a clause-centric view. This time, we will take
a variable-centric view. Review with your group what these two perspectives were. In each view,
we imagined having to make a choice. What choices did we need to make?

In the clause-centric view, we made a choice for each clause about which variable we would set
to true in order to satisfy that clause. In the variable-centric view, we will make a choice for each
variable about whether to set it to true or false.

Both cases ultimately require us to satisfy the variable constraints (if xi is set to true, then x̄i must
be set to false) and the clause constraints (at least one term in each clause must be set to true); the
difference is in the order in which we think about satisfying the two types of constraints.



Part II: Reducing 3-SAT to 3-Coloring
The three colors that we use to color the nodes in the graph will be teal, fuchsia, and navy. We will
imagine these colors corresponding to “true,” “false,” and “null.”

We want the nodes and edges in the graph we construct to encode the constraints that:
1. We cannot set both xi and x̄i to be true; if xi is true then x̄i must be false, and vice versa.
2. In every clause, there must be at least one variable that is set to true.

Draw a “variable gadget” that enforces the constraint that we cannot set both xi and x̄i to true.

In this gadget, we have a node for variable xi and a node for its negation x̄i. These two nodes are
connected by an edge, which makes it impossible to color them both teal (i.e., to set both of them
to true).

Now consider the following gadget:

Connect a single copy of this gadget to all of your variable gadgets in a way that enforces the
constraint that each node corresponding to a term must be set to teal (true) or fuchsia (false); we
cannot set variable values to null (navy).

We connect both the xi node and the x̄i node from the above gadget to the navy-colored node in
our three-node triangle gadget. Doing this means that now we must color one of xi and x̄i teal
(true) and the other fuchsia (false). If we have multiple variables, we connect all of the variable
gadgets to the same three-node triangle gadget.



Part III: A Clause Gadget
We have constructed a graph in which every 3-coloring corresponds to a truth assignment to the
variables, and any truth assignment can be represented as a valid 3-coloring. We want it to be
possible to represent a truth assignment as a valid 3-coloring only if it is a satisfying assignment.

To accomplish this, we will add one gadget to our graph for each clause. Consider the following
gadget, which corresponds to the clause xi

∨
x̄j

∨
xk:

Each of the left-most nodes in the gadget has an edge to one of the terms in the corresponding
clause. The teal node labeled T is the same node as the teal node in the gadget from the previous
page. This is a single node that is shared among all of the clause gadgets.

Show that if the clause is satisfied, then there is a valid 3-coloring of this gadget. (There are seven
possible truth assignments to the three variables that satisfy the clause. You do not need to check
all of them, but you should check two or three to convince yourself that this works.)

Show that if the graph can be 3-colored, then there is a satisfying assignment of truth values to the
variables. Do this by assuming that there is a valid 3-coloring in which all three “term” inputs to
the gadget are colored fuchsia (false), and derive a contradiction.


